
Aztec C65/AS65
Assembler Notes

for the
Aztec64 Distribution

Prepared by Bill Buckels, August 7, 2013

This document contains © Copyrighted Material used with permission supplemented
with additional original material © Copyright 2013 Bill Buckels. All Rights Reserved.

Disclaimer and Conditions of Use

The material presented in this document comes with no warranty or guarantee of fitness
of use of any kind. It is provided as-is for information purposes only.

The contents of this document and any resulting derivative work may be used for
whatever you wish as long as you agree that neither Bill Buckels or the other copyright
holders have any warranty or liability obligations whatsoever from said use.

Dedication

The Aztec64 distribution of Aztec C available from the Aztec C Museum
http://www.aztecmuseum.ca is dedicated to my old friend, colleague and
long-time mentor, Leslie Eugene Gros, and this document is dedicated to my new friend
Daniel Strang for his dedication to the Aztec64 distribution.

Thanks also to Jeff Hurlbert (Rubywand) for the Manx Aztec C Mini-manual for Apple
DOS 3.3 from which some of this material was edited, and to the late Paul R. Santa-
Maria for proving the PDF Manual excerpts that appear at the end of this document.

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 1

http://www.aztecmuseum.ca/

Table of Contents

Forward .. 2
Assembly Source Examples ... 3

Original Compiler Assembly Sources .. 3
Additional Assembly Sources ... 3

Do I need To Use Assembler? ... 3
Assembler Notes for Aztec C65 - Aztec64 distribution .. 3

How Things Work .. 4
What Things Are .. 4
Why Things Are and How They Work .. 4
What if Assembly is Necessary or Preferable? .. 5

Generating a commented Assembler (ASM) File with C65 5
ZERO page ... 6
Inline Assembly ... 6

Safety Play – Function Wrappers ... 7
Closing Remarks .. 8
Appendix A65 – Hand Written Assembler .. 9
Appendix ASM – Compiler Written Assembler ... 11
Appendix AS65 - AS65 6502 Assembler ... 12

Overview ... 12
Syntax .. 13

Statements ... 13
Labels .. 13
Expressions ... 13
Constants .. 13
Assembler Directives .. 14

Appendix C65 – C65 Native Code Compiler ... 15
Options .. 15
The C Programming Language .. 19

Appendix LN65 - The Linker ... 20
Linking with the Libraries .. 20

Aztec C65 Manual Excerpt Notes ... 22
Manual Excerpts .. 22

Forward

This document provides an overview of Assembly Language in the Aztec64 Commodore
64 Aztec C65 cross-compiler distribution available from http://www.aztecmuseum.ca
(the Aztec C Website).

I created it for Daniel Strang (a fellow Commodore 64 enthusiast) but it may prove useful
for others who wish to understand or use assembler in an old Aztec C program for the
Commodore 64. Some of this is also applicable to Aztec C65 for the Apple II as well, and
even for other old compilers and assemblers.

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 2

http://www.aztecmuseum.ca/

I no longer have the manual that came with this compiler so the programmer must follow
the code that I have provided with Aztec64 for practical examples:

Assembly Source Examples

Several assembly language sources are in Aztec64. Some are listed below:

Original Compiler Assembly Sources
A65 source – hand-written assembler files that end with the .A65 extension:
See Appendix A65 for a listing of these

Additional Assembly Sources
ASM source – compiler generated assembler files
See Appendix ASM for a listing of these

I have also provided the Aztec C Assembly language portions from the manual of a
later version of Aztec C65 for the Apple II at the end of this section of the document for
reference. Much of the information from the newer manual applies to Aztec64’s
assembler, AS65 because the newer assembler descended from the older AS65.

Do I need To Use Assembler?

No. The compiler does that for you. But if you decide to use assembler you need to be
intimate with the Computer and the Compiler at the very lowest levels, and you need to
know your 6502 assembly language:

https://en.wikipedia.org/wiki/MOS_Technology_6502

http://homepage.ntlworld.com/cyborgsystems/CS_Main/6502/6502.htm

You also need to know what works and what doesn’t, and all I can suggest is that you
study and experiment, and learn by trial and error. Back then this was the way that most
of us learned assembler, so you will enjoy a vintage learning experience if you decide to
go this route… but it will be a very time consuming learning-curve so be prepared to
work very long and hard with few results at times.

Assembler Notes for Aztec C65 - Aztec64 distribution

Aztec C65 is a two-pass compiler. In the old days to save memory and compiling time
compilers generally compiled to assembly language and then some assembler assembled
the assembly language generated by the compiler. Sometimes the programmer “tweaked”
the assembly language to make it work better before assembling.

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 3

http://homepage.ntlworld.com/cyborgsystems/CS_Main/6502/6502.htm
https://en.wikipedia.org/wiki/MOS_Technology_6502

How Things Work

In the Aztec64 Distribution, every Aztec C65 program is compiled from C to assembler
first (to an ASM file), then assembled to an Aztec C65 object file (a REL file) and finally
linked together to create a binary program image with its load address (org, base address)
at $810 in the Commodore 64's memory. The MKBASIC program is then run which
appends a small launcher program (a C64 BASIC program) to the front of the binary
image file. The program is then finished and ready to be put onto a C64 disk. If it is the
first program on the C64 disk it will automatically launch and run.

So therefore every Aztec C program calls assembler routines because every Aztec C
program is compiled to assembler first and then assembled. Review any MAKE file in
Aztec64 to see how this is done.

What Things Are

The programs used to do so are in the BIN directory.

1. C65 - compiles C to Assembler.
2. AS65 - assembles ASM to REL object files.
3. LN65 - links REL object files with other REL files and REL files in LIB files.
4. MKBASIC - appends BASIC launcher to finished BINary program.

Why Things Are and How They Work

Most C compilers in the 80's and 90's could be used as a 2 pass compiler. Even today
most provide an option to produce an assembler listing.

It is seldom if ever necessary to use assembler in a C program if you can do the same
thing in C. The compiler takes care of details like saving and restoring the stack, and
pusing and popping the stack, and other details that an assembly language programmer
would need to do to replace all the C code in a program with assembly language.

However, every compiled C program for older computers must call ROM routines built-
in to the hardware of a computer, and if a DOS (Disk-Operating System) is used or
special hardware is used, calls to routines in RAM (random access memory) may also be
needed. On older computers these calls are done in pure assembler modules that are
generally provided as part of the C runtime library that came with the C
compiler. Modern C compilers for systems like Microsoft Windows do not generally
call ROM or RAM routines directly and instead make calls to an intermediate layer that
Windows calls an API (Application Program Interface). While Assembler can be used to
make those calls this is generally not done in an application program. On newer
computers, device drivers are generally available to avoid the need for direct assembly
language calls to hardware ROM routines.

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 4

If it is necessary to call a routine in ROM or RAM directly from assembler in a C
program, the programmer needs to know how to call and return safely from assembler.
Every old compiler did this differently.

What if Assembly is Necessary or Preferable?

It may be necessary or preferable to use assembly language instead of C in the following
situations:

1. If directly calling ROM or RAM routines (routines outside your program). Function
pointers in C can also be used to do this, but sometimes ROM routines require registers to
be loaded and flags to be set before making calls to them. Sometimes register or flag
values must be preserved and returned to the C program, so they must be moved to where
the C program expects them in memory. In the old days, each hardware company had
different ways of doing things so standards developed slowly if at all. The C language is
a high level language and provides no standard for dealing with processor registers and
other assembler directly. The assembler for the processor does that! So in situations
where it is desirable to code at the processor level assembly language is used.

2. C function calls sometimes make extensive use of the stack and the heap especially
making repetitive calls in a loop. This can result in much time wasted for time sensitive
operations. Assembler can be used to optimize these portions of a program instead of C.

One technique that was common in the old days was to write a SINGLE function in the C
language and compile it to assembler, then to optimize the assembler by hand. This
provides the C programmer with a template. If you want to use this technique your
SINGLE function should be written with as few loops and variables as possible. Do not
be afraid to use GOTOs and LABELs.

Generating a commented Assembler (ASM) File with C65

i.e. C65 -T TESTRAND.C

When the -T option is used with the Aztec C65 compiler, the compiler will generate a
merged Assembler (ASM) file with the C Program included as comments (preceded with
an asterisk *).

This is useful for following the assembly language in the source file, especially for
optimizing. Much optimization can be done in C by trying-out different techniques and
reviewing each to find the most efficient assembler before even optimizing the
assembler.

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 5

ZERO page

6502 Computers like the Commodre 64 and the Apple II use ZERO page extensively to
interface assembly language to the operating system and the operating system can also
use ZERO page. ZERO page is the 256 byte page starting at absolute RAM address of 0.

Aztec C65 uses zero page extensively. Review the C:\Aztec64\INCLUDE\ZPAGE.H file
for details.

Inline Assembly

http://en.wikipedia.org/wiki/Inline_assembler

In Aztec C65 you can insert assembly language in a C program and create entire
functions or just an assembly line or two. The manual that is attached at the end of this
section provides an explanation of how inline assembly works in Aztec C. Even until
recently, many compilers provided inline assembly in various formats. I don’t know if
Aztec C was first or even among the first, but they were the first C compiler I used with a
sophisticated inline assembly interface. Microsoft C didn’t until the late ‘80’s following
Turbo C’s lead if I recall correctly. Some compilers also provided other ways to insert
inline assembly into C programs, using byte strings and so forth which looked similar to
cc65’s __asm__ (""); which is ok for a line or two of safe calls…

If you use a line or two of inline assembly in your C programs, make sure your calls
don’t crash your program. Also be aware that haywire calls can jump to undesired code
that could do crazy things like wipe-out disks so experiment on a work disk and make
sure you test thoroughly before sending copies of work to other folks. (This is a good
practice to follow with any programming of course, but with low level code the risks can
be greater especially during learning things like assembler and the use of pointers in C.)

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 6

http://en.wikipedia.org/wiki/Inline_assembler

Safety Play – Function Wrappers

One technique that I use as a “safety play” is to wrap inline assembly in a C function
body with the hope that the Aztec C65 program will reset everything for me (from
B64NAT.LIB’s DLIST.C):

/* yes virginia, there is inline assembly in Aztec C */
_dlode()
{
#asm
* rather than muck with passing stack args
* i kept it simple and hard-coded the relocatable
* address for the dir buffer which is $1800
LOAD equ $ffd5
* SET FLAG FOR A LOAD
 lda #0
* ALTERNATE START
 ldx #0
 ldy #$18
 jsr LOAD
 rts
#endasm
Another technique that I use is to pass parameters to assembly from C on ZERO page
using pointers in my C program to load ZERO page before making my assembly call in
the wrapped assembler function.

An example of what I mean is shown below. This is Apple II Code, not Commodore 64
code:

#asm
instxt <zpage.h>
COLOR equ REGS
#endasm
unsigned char *byteregptr = (unsigned char *)0x80;
setcolor(value)
{
 /* load parameters into user reg */
 byteregptr[COLOREG] = value;
 /* make ml call */
#asm
 LDA COLOR ; Sets the plotting color to N, 0 <= N <= 15
 JSR $F864
#endasm
}

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 7

You can include an entire inline assembly function in your C65 program. But if you are
thinking about doing that, why not just keep it in its own module and link it later? The
OV program example in Aztec64 shows how that is done.

Closing Remarks

There is much more to say on this whole business of assembly in Aztec C65, but as I said
at the beginning, this is an Overview. I hope that this information is useful and good luck
with exploring this further.

Appendices and Manual Excerpts follow.

Best Regards,

Bill Buckels
bbuckels@mts.net

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 8

mailto:bbuckels@mts.net

Appendix A65 – Hand Written Assembler

The following are Aztec64 run-time library sources and are distributed with Aztec64:

C:\Aztec64\OBJ\BRK.A65
C:\Aztec64\OBJ\INTER.A65
C:\Aztec64\OBJ\OV65.A65
C:\Aztec64\SAMPLES\OV\OV65.A65
C:\Aztec64\SRC\FLTSRC\ATOF.A65
C:\Aztec64\SRC\FLTSRC\CRT1.A65
C:\Aztec64\SRC\FLTSRC\FLT1.A65
C:\Aztec64\SRC\FLTSRC\FLT2.A65
C:\Aztec64\SRC\FLTSRC\FLT65.A65
C:\Aztec64\SRC\FLTSRC\FTOA.A65
C:\Aztec64\SRC\FLTSRC\MATH.A65
C:\Aztec64\SRC\NATIVE\FSTSWT.A65
C:\Aztec64\SRC\NATIVE\ISTACK.A65
C:\Aztec64\SRC\NATIVE\LMATH.A65
C:\Aztec64\SRC\NATIVE\LSHIFT.A65
C:\Aztec64\SRC\NATIVE\MATH.A65
C:\Aztec64\SRC\NATIVE\MOVE.A65
C:\Aztec64\SRC\NATIVE\SHIFT.A65
C:\Aztec64\SRC\NATIVE\STACK.A65
C:\Aztec64\SRC\NATIVE\SUP.A65
C:\Aztec64\SRC\NATIVE\SWIT.A65
C:\Aztec64\SRC\NATIVE\TMPSAV.A65
C:\Aztec64\SRC\OVERLAY\OV65.A65
C:\Aztec64\SRC\OVERLAY\OVINT.A65
C:\Aztec64\SRC\STDIO\AGETC.A65
C:\Aztec64\SRC\STDIO\APUTC.A65
C:\Aztec64\SRC\STDIO\GETC.A65
C:\Aztec64\SRC\STDIO\PUTC.A65
C:\Aztec64\SRC\SYSIO\BLOCKMV.A65
C:\Aztec64\SRC\SYSIO\C64CMD.A65
C:\Aztec64\SRC\SYSIO\C64ERR.A65
C:\Aztec64\SRC\SYSIO\C64SUP.A65
C:\Aztec64\SRC\SYSIO\CALLDEV.A65
C:\Aztec64\SRC\SYSIO\CLEAR.A65
C:\Aztec64\SRC\SYSIO\CRT0.A65
C:\Aztec64\SRC\SYSIO\DEVICE.A65
C:\Aztec64\SRC\SYSIO\INDEX.A65
C:\Aztec64\SRC\SYSIO\INTERP.A65
C:\Aztec64\SRC\SYSIO\LONGS.A65
C:\Aztec64\SRC\SYSIO\RINDEX.A65
C:\Aztec64\SRC\SYSIO\STRCAT.A65
C:\Aztec64\SRC\SYSIO\STRCMP.A65

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 9

C:\Aztec64\SRC\SYSIO\STRCPY.A65
C:\Aztec64\SRC\SYSIO\STRLEN.A65
C:\Aztec64\SRC\SYSIO\STRNCMP.A65
C:\Aztec64\SRC\SYSIO\STRNCPY.A65
C:\Aztec64\SRC\SYSIO_EXIT.A65
C:\Aztec64\SRC\XFER14C\C64.A65
C:\Aztec64\SRC\XFER14C\OC64.A65
C:\Aztec64\SRC\XFER14C\SUPERSER.A65

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 10

Appendix ASM – Compiler Written Assembler

The following are my own library sources and are distributed with Aztec64:

C:\Aztec64\B64NAT\ASM\ATTEXT.ASM
C:\Aztec64\B64NAT\ASM\BLOAD.ASM
C:\Aztec64\B64NAT\ASM\BOX.ASM
C:\Aztec64\B64NAT\ASM\BSAVE.ASM
C:\Aztec64\B64NAT\ASM\CIRCLE.ASM
C:\Aztec64\B64NAT\ASM\CRTMODE.ASM
C:\Aztec64\B64NAT\ASM\DECODES.ASM
C:\Aztec64\B64NAT\ASM\DISK.ASM
C:\Aztec64\B64NAT\ASM\DLIST.ASM
C:\Aztec64\B64NAT\ASM\FBOX.ASM
C:\Aztec64\B64NAT\ASM\FCHAR.ASM
C:\Aztec64\B64NAT\ASM\GCLR.ASM
C:\Aztec64\B64NAT\ASM\GETCH.ASM
C:\Aztec64\B64NAT\ASM\GETPIXEL.ASM
C:\Aztec64\B64NAT\ASM\KBFLUSH.ASM
C:\Aztec64\B64NAT\ASM\KBHIT.ASM
C:\Aztec64\B64NAT\ASM\LINE.ASM
C:\Aztec64\B64NAT\ASM\MEMSCR.ASM
C:\Aztec64\B64NAT\ASM\OUTTEXT.ASM
C:\Aztec64\B64NAT\ASM\PALSET.ASM
C:\Aztec64\B64NAT\ASM\PFONT.ASM
C:\Aztec64\B64NAT\ASM\PICLODE.ASM
C:\Aztec64\B64NAT\ASM\PLOT.ASM
C:\Aztec64\B64NAT\ASM\PUTIMAGE.ASM
C:\Aztec64\B64NAT\ASM\RB.ASM
C:\Aztec64\B64NAT\ASM\REVTEXT.ASM
C:\Aztec64\B64NAT\ASM\SCR.ASM
C:\Aztec64\B64NAT\ASM\SETLOGO.ASM
C:\Aztec64\B64NAT\ASM\SID.ASM
C:\Aztec64\B64NAT\ASM\XCHAR.ASM
C:\Aztec64\B64NAT\ASM\XCOLOR.ASM
C:\Aztec64\B64NAT\ASM\XFLOAD.ASM
C:\Aztec64\B64NAT\ASM\XSTR.ASM

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 11

Appendix AS65 - AS65 6502 Assembler

as65 [-c] [-l] [-ZAP] [-o file] file.a65

Overview

The AZTEC AS65 assembler is a relocating assembler which supports most of the
standard MOS Technology mnemonics and is normally invoked by the command line:

as65 test.a65

The file "test.a65" is the assembly language source file. The filename does not have to
end in ".a65". In this case, the relocatable object file produced by the assembler will be
named "test.rel" where test is the same name as the prefix of the input filename. There are
several options to the assembler which are detailed below.

-o

An alternative object filename can be supplied by specifying the option "-o filename".
The object file will be written to the filename following the "-o". The filename does not
have to end in ".reI". It is, however, the recommended format.

-c

This option forces the assembler to make two passes through the source file. This allows
most forward references to be resolved during the second pass. The overall result is that
the object file size is significantly smaller since very few local labels need to be stored in
the object module. This option was added primarily for the production of libraries, where
size of the module is important. The overhead of reading the source file twice makes this
option much less useful during normal compilation and assembly with one exception. If
the "-b" option of C65 is used, using the "-c" option will detect a branch out of range
without having to use the linker.

-l (lower case "L")

This option generates a listing of the assembly language file. All opcodes are specified in
the listing and all arguments that are known. Unknown arguments such as forward
branches and addresses are represented as "XX". Using the "-c" and the "-l" together
eliminates the "XX"'s in forward branches. The output is placed in a file with a ".lst"
extension.

-ZAP

This option forces the assembler to delete the input file after performing the translation.

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 12

Syntax

The following defines the syntax for the AS65 assembler.

Statements

Source files for the AZTEC AS65 assembler consist of statements of the form:

[label] [opcode] [argument] [[;]comment]

The brackets "[...]" indicate an optional element.

Labels

A label consists of any number of alphanumerics starting in column one. If a statement is
not labeled, then column one must be a blank or a tab or an asterisk. An asterisk denotes a
comment line. A label must start with an alphabetic. An alphabetic is defined to be any
letter or one of the special characters '_' or '.'. An alphanumeric is an alphabetic or a digit
from O to 9. A label followed by "#" is declared external. The AZTEC C compiler places
a '_' character at the end of all labels that it generates.

Expressions

Expressions are evaluated from left to right with no precedence as to operator or
parentheses. Operators are:

* -multiply
/ -divide
+ -add
- -subtract
-constant
= -constant
< -low byte of expression
> -high byte of expression
Constants

The default base for numeric constants is decimal. Other bases are specified by the
following prefixes or suffixes:

BASE PREFIX SUFFIX
2 % b,B
8 @ o,O,q,Q
10 null,& null
16 $ h,H
A character constant is of the form 'character as in' A.

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 13

Assembler Directives

The AZTEC AS65 assembler supports the following pseudo operations:

COMMON block name -sets the location to the selected common block.
CSEG -select code segment.
DSEG -select data segment
END -end of assembler source statements.
ENTRY expr -entry point of final module.
EQU expr -define label value.
FCB expr -define byte constant
FCC /expr/ -define byte string constant
FDB expr -define double byte constant
FUNC label -if label is not defined then it is declared
external.
INSTXT /file/ -the specified file is included at this point
PUBLIC label -declares label to be external.
RMB expr -reserves expr bytes of memory with no particular
value.
WEAK expr -define label value if not previously defined

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 14

Appendix C65 – C65 Native Code Compiler

c65 [-bts] [-o file] [-Dtoken] [-Enn] [-Xnn] [-Ynn] [-Znn] file.c

The Aztec C65 compiler is a true native code C compiler. C65 produces in-line assembly
language code for all C statements with the following exceptions:

• All floating point operations.
• Multiplication, division, and modulus.
• Shifts.
• All pseudo-stack operations.
• Switches.
• Structure copies.

The code generated by the compiler uses a 16 bit pseudo- stack pointer kept in zero page.
This stack is used for all local variable storage and for passing arguments to functions.
The return address of function calls is also stored on the pseudo-stack. The 6502 machine
stack is only used for temporary storage, thus fully recursive programming may be used
without the limitations of the 6502 machine stack.

C65 makes use of zero page as work space and temporary registers (defined in
ZPAGE.H). C65 also uses zero page as user declared register variables. Up to eight
"register" declarations are accepted within each function. Each routine which uses
register variables automatically saves the locations it uses on the pseudo-stack and
restores them when it exits. Chars, ints, unsigned ints and pointers may be declared as
registers.

Use of register variables produces significantly smaller and faster code. The hidden
overhead of saving and restoring register variables is minor compared to the gain in speed
and code size. The simplest use of the compiler is just

c65 name.c

It is recommended that the file name end in ".c", but it is not necessary. C source
statements found in the "name.c" file are translated to 6502 assembler source statements
and written to a file named "name.asm". Then the AS65 assembler can be used to
assemble the "name.asm" file and produce a relocatable object file called "name.rel".

Options

The options available with C65 are listed below.

-o

This option allows the user to specify the name of the output file. This can be used to
specify the name of the assembly language file as in:

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 15

c65 -o temp.a65 dbms.c

which compiles "dbms.c" and places the assembly language in the file "temp.asm" and
quits.

-b

Normally, when conditionals are evaluated, the compiler generates a test and a branch
around a "jmp" instruction since it cannot know that the branch will be in range. For
example:

cmp #45
beq .5
jmp .17

This option will force the compiler to generate a direct branch instead of the branch and
jump, as in:

cmp #45 .
bne .17

If the branch is too long, an error message will not be generated until the module is linked
Most of the library was compiled with this option.

-s

By default, AZTEC C expects that pointer references to members within a structure are
limited to the structure associated with the pointer. However, to support existing source
where this is not the case, the "-s" option is provided If the "-s" is specified as a compile
time option and a pointer reference is to a member name that is not defined in the
structure associated with the pointer then all previously defined structures will be
searched until the specified member is found The search will begin with the structure
most recently defined and search backward from there.

-t

The "-t" option will copy the C source statements as comments in the assembly language
output file. Each C statement is followed by the assembly language code generated from
that statement

-D

This option allows a token to be entered into the macro definition table as being defined
This ic: most useful for controlling the conditional compilation of code. For example, if a

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 16

section of code is to be included for a specific customer, it might be surrounded by an
ifdef-endif combination:

#ifdef CUSTOM
statement1;
statement2;
statement3;
#endif

When normally compiled, these statements would not be included, but when compiled
with:

c65 -DCUSTOM prog.c

the statements would be compiled into the program. Multiple uses of the "-D" option are
permitted on one command line. There are four options for changing default internal table
sizes.

-E

The "-E" option specifies the size of the expression work table. The default value for "-E"
is 120 entries. Each entry uses 14 bytes. Each operand and operator in an expression
requires one entry in the expression table. Each function and each comma within an
argument list is an operator. There are some other rules for determining the number of
entries that an expression will require. Since they are not straightforward and are subject
to change, they will not be defined here. The best advice is that if a compile terminates
because of an expression table overflow (error 36), recompile with a larger value for "-
E".

The following expression uses 15 entries in the expression table:

a = b + function(a + 7, b, d) * x;

The following will reserve space for 300 entries in the expression table:

c65 -E300 prog.c

There must be no space between the "-E" and the entry size.

-X

The "-X" option specifies the size of the macro (#define) work table. The macro table
size defaults to 2000 bytes. Each "#define" uses four bytes plus the total number of bytes
in the two strings. The following macro uses 9 bytes of table space:

#define v 0x1f

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 17

The following will reserve 4000 bytes for the macro table:

c65 -X4000 prog.c

The macro table needs to be expanded if an error 59 (macro table exhausted) is
encountered.

-Y

The "- Y" option specifies the maximum number of outstanding cases allowed in a switch
statement. The default size for the case table is 200 entries, with each entry using 4 bytes.

The following will use 4 (not 5) entries in the case table:

switch(a) {
 case 0:
 a +=1;
case 1:
break;
case I:
 switch(x) {
 case 'a':
 funct1(a);
 break;
 case 'b':
 funct2(b);
 break;
}
 a = 5;
case 3:
 funct2(a);
 break;
}
The following allows for 300 outstanding case statements:

c65 -Y300 prog.c

The size of the case table needs to be increased if an error 76 (case table exhausted) is
encountered.

-Z

The "-Z' option specifies the size of the string literal table. The size of the string table
defaults to 2000. Each string literal occupies a number of bytes equal to the number of
characters in the string plus one (for the null terminator).

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 18

The following will reserve 3000 bytes for the string table:

c65 -Z3000 prog.c

The size of the string table needs to be increased if an error number 2 (string space
exhausted) is encountered.

The name of the C source file must always be the last argument.

The C Programming Language

The AZTEC C native-code compiler is implemented according to the language
description supplied by Brian W. Kernighan and Dennis M. Ritchie in The C
Programming Language. The user should refer to that document for a description and
definition of the C language.

The reader who is not familiar with C and does not have a copy of the Kernighan and
Ritchie book is strongly advised to acquire one. The book provides an excellent tutorial
for learning and using C. The program examples given in the book, can be entered,
compiled with AZTEC C and executed to reenforce the instruction given in the text.

The library routines defined in standard C that are supported by AZTEC C are identical
in syntax to the standard. AZTEC C includes some extended library routines that do not
exist in the standard C to allow access to native operating system functions. The system
dependent functions should be avoided in favor of the standard functions if there is or
may be a requirement to run the software under different operating systems.

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 19

Appendix LN65 - The Linker

Linking with the Libraries

The LN65 assembler translates assembly language into a format called relocatable object
format. This format is designed to allow the program module to be converted into
absolute data which will be loaded and run at a specific address in memory. This
becomes particularly important when the final program consists of several modules
compiled and assembled separately.

For example, assume that a program consists of two modules, "main.rel" and "subs. reI".
Assume, also, that "subs" contains several functions to be called from "main". Since the
two modules are compiled and assembled separately, there is no way for "main" to know
where "subs" is going to be in memory. Even if "main" did know the address of the
bcginning of the "subs" module, it has no way of knowing the size of each function in
that module.

It is possible that one could give all the information needed when compiling and
assembling "main" to directly produce a binary image. This is only practical if the
amount of information needed is quite small However, most C programs make use of a
number of functions supplied with the compiler. These functions are usually kept in
individual modules so that functions not used by the program are not included.

The number of these functions make it totally impractical to produce any kind of direct
binary output The solution is the re-locatable object format and a program to link object
modules together, the Aztec linker, LN65.

LN65 combines any number of object modules together and produces a binary file in the
standard Commodore 64 "BIN" format. LN65 will also indicate if anything is missing.

For this example type:

ln args.rel

In this case, LN65 will attempt to produce a binary file from "args.rel". However, since
the "args" program makes reference to several functions which are not defined in the
"args" module, the linker will give error messages to that effect.

Supplied with the Aztec C65 system, is a large set of subroutines which perform many
different functions. A large percentage of these routines are used to perform input and
output operations, since the C language has no inherent mechanisms for doing I/O.

To simplify the process of selecting the correct routines to be linked with a particular
program, it is possible to combine a number of routines into a single file, called a library.
The format of a library is designed so that individual modules can be read from it without

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 20

reading all the modules. In addition, the linker, LN65, will search a library and only use
those modules which satisfy references made in other modules that it has processed.

Thus, to correctly link the "args" program, type:

ln args.rel sa65.lib -b810

In this case, the linker will read the "args.rel" file and make a list of all undefined
symbols. Then, it will check the library for any modules which contain the proper symbol
If it finds one, it will read that module from the library. If there are any undefined
symbols in that module, they are added to the list.

This process continues until the end of the library is reached If there are still unresolved
symbols in the list, they are displayed in error messages and the link aborted If all the
unresolved symbols get matched up with corresponding routines in the library, then the
linker proceeds with combining all the object modules together into one binary program.

If the link was successful, there will be a binary file called "args" located in the current
folder. LN65 will call the output file the same name as the first object module argument
To specify a different name, LN65 can be used with a "-o" option as follows:

ln -o testprog args.rel sa65.lib -b810

which will place the output in a file called "testprog" instead.

And that's all there is to it!

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 21

Aztec C65 Manual Excerpt Notes

There is currently no original manual available for this version.

The preceding descriptions of the assembler, compiler, and linker are rewritten manual
excerpts from the Apple II C65 native mode compiler of the same vintage. To the best of
my knowledge and verification, that information has been accurately rewritten for the
Aztec64 distribution.

The section that follows is excerpted from the Apple II Aztec65 version 3.2b manual.
Some information may or may not apply to the AS65 assembler in Aztec64, but like the
rest of the material in this document it is the best that I can provide at this time.

End of Notes

Manual Excerpts

NEXT PAGE

8/7/2013 Assembler Notes for Aztec C65 - Aztec64 distribution Page 22

	Forward
	Assembly Source Examples
	Original Compiler Assembly Sources
	Additional Assembly Sources

	Do I need To Use Assembler?

	Assembler Notes for Aztec C65 - Aztec64 distribution
	How Things Work
	What Things Are
	Why Things Are and How They Work
	What if Assembly is Necessary or Preferable?
	Generating a commented Assembler (ASM) File with C65

	ZERO page
	Inline Assembly
	Safety Play – Function Wrappers

	Closing Remarks
	Appendix A65 – Hand Written Assembler
	Appendix ASM – Compiler Written Assembler
	Appendix AS65 - AS65 6502 Assembler
	Overview
	Syntax
	Statements
	Labels
	Expressions
	Constants
	Assembler Directives

	Appendix C65 – C65 Native Code Compiler
	Options
	The C Programming Language

	Appendix LN65 - The Linker
	Linking with the Libraries

	Aztec C65 Manual Excerpt Notes
	Manual Excerpts

