

Aztec C

float k = 5.0;
switch«int)k) {
case 4:

printf("good case value\n");
break;

case 5.0:

}

printf("bad case value\n");
break;

Compiler Error Messages

The programmer must replace "case 5.0:" with "case 5".

75: missing colon on case

This should be straightforward If the compiler accepts a case value,
a colon should follow it A semi-colon must not be accidently entered
in its place.

76: too many cases in switch

The compiler reserves a limited number of spaces in an internal
table for case statements. If a program requires more cases than the
table initially allows, it becomes necessary to tell the compiler what the
table value should be changed to. It is not necessary to know exactly
how many are needed; an approximation is sufficient, depending on
the requirements of the situation.

77: case outside of switch

The keyword, case, belongs to just one syntactic structure, the
switch. If "case" appears outside the braces which contain a switch
statement, this error is generated Remember that all keywords are
reserved, so that they cannot be used as variable names.

78: missing roIon

This message indicates that a colon is missing after the keyword,
default. Compare error 75.

79: duplicate default

The compiler has found more than one default in a switch. Switch
will compare a variable to a given list of values. But it is not always
possible to anticipate the full range of values which the variable may
take. Nor is it feasible to specify a large number of cases in which the
program is not particularly interested

So C provides for a default case. The default will handle all those
values not specified by a case statement It is analogous to the else
companion to the conditional, if. Just as there is one else for every if,
only one default case is allowed in a switch statement. However, unlike
the else statement, the position of a default is not crucial; a default can
appear anywhere in a list of cases.

- err.25 -

Com piler Error Messages Aztec C

80: default outside of switch

The keyword, default, is used just like case. It must appear within
the brackets which delimit the switch statement.

81: break/ rontinue error

Break and continue are used to skip the remainder of a loop in
order to exit or repeat the loop. Break will also end a switch statement.
But when the keywords, break or continue, are used outside of these
contexts, this message results.

82: illegal character

Some characters simply do not make sense in a C program, such as
'$' and '@'. Others, for instance the pound sign (#), may be valid only
in particular contexts. ,.

83: too many nested includes

#includes can be nested, but this capacity is limited The compiler
will balk if required to descend more than three levels into a nest. In
the example given, file D is not allowed to have a #include in the
compilation of file A.

~A ~B ~C ~D
#include "B" #include "e' #include "D"

84: too many array dimensions

An array is declared with too many dimensions. This error should
appear in conjunction with error 11.

85: not an argument

The compiler has found a name in the declaration list that was not
in the argument list. Only the converse case is valid, i.e., an argument
can be passed and not subsequently declared

86: null dimension in array

In certain cases, the compiler knows how to treat multidimensional
arrays whose left-most dimensions are not given in its declaration.
Specifically, this is true for an extern declaration and an array
initialization. The value of any dimension which is not the left-most
must be given.

extern char array[][12];
extern char badarray[5][];

87: invalid character ronstant

/* correct * /
/* wrong */

Character constants may consist of one or two characters enclosed
in single quotes, as 'a' or 'ab'. There is no analog to a null string, so "
(two single quotes with no intervening white space) is not allowed
Recall that the special backslash characters (\ b, \n, \ t etc.) are singular,

- err.26 -

Aztec C Compiler Error Messages

so that the following are valid: '\n', '\na', 'a\n'; 'aaa' is invalid

88: not a structure

Occurs only under compilation without the -S option. A name used
as a structure does not refer to a structure, but to some other data type.

int i;
i.member = 3; /* error 88 * /

89: invalid storage class

A globally defined variable cannot be specified as register. Register
variables are required to be local.

90: symbol rededared

A function argument has been declared more than once.

91: illegal use of floating point type

Floating point numbers can be negated (unary minus), added,
subtracted, multiplied, divided and compared; any other operator will
produce this error message.

92: illegal type conversion

This error code indicates that a data type conversion, implicit in
the code, is not allowed, as in the following piece of code:

int i;
float j;
char *ptr;

i = j + ptr;

The diagram shows how variables are converted to different types
in the evaluation of expressions. Initially, variables of type char and
short become int, and float becomes double. Then all variables are
promoted to the highest type present in the expression. The result of
the expression will have this type also. Thus, an expression containing
a float will evaluate to a double.

hierarchy of types:

double <-- float
long
unsigned
int <-- short, char

This error can also be caused by an attempt to return a structure,
since the structure is being cast to the type of the function, as in:

- err.27 -

Compiler Error Messages

int funcO
{

}

struct tag sam;
return sam;

93: illegal expression type for switch

Aztec C

Only a char, int or unsigned variable can be switched See the
example for error 74.

94: bad argument to define

An illegal name was used for an argument in the definition of a
macro. For a description of legal names, see error 65.

95: no argument list

When a macro is defined with arguments, any invocation of that
macro is expected to have arguments of corresponding form. This
error code is generated when no parenthesized argument list was found
in a macro reference.

define getcharO getc(stdin)

c = getchar; /* error 95 * /
96: missing argument to macro

Not enough' arguments were found in ,an invocation of a macro.
Specifically, a "double comma" will produce this error:

#define reverse(x,y,z) (z,y,x)

func(reverse(i"k));

97: obsolete [see error 19]

98: not enough ~ in macro reference

The incorrect number of arguments was found in an invocation of
a previously defined macro. As the examples show, this error is not
identical to error 96.

#define exchange(x,y) (y,x)

func(exchange(i»; /* error 98 * /
99: internal

100: internal

[see error 4]

[see error 4]

101: missing close parenthesis on macro reference

A right (closing) parenthesis is expected in a macro reference with
arguments. In a sense, this is the complement of error 95; a macro
argument list is checked for both a beginning and an epding.

- err.28 -

Aztec C Compiler Error Messages

102: macro arguments too long

The combined length of a macro's arguments is limited. This error
can be resolved by simply shortening the arguments with which the
macro is invoked

103: #else with no #if

Correspondence between #if and #else is analogous to that which
exists between the control flow statements, if and else. Obviously,
much depends upon the relative placement of the statements in the
code .. However, #if blocks must always be terminated by #endif, and
the #else statement must be included in the block of the #if with
which it is associated For example:

#ifERROR> 0
printf("there was an error\n");

#else
printf("no error this time\n");

#endif

#if statements can be nested, as below. The range of each #if is
determined by a #endif. This also excludes #else from #if blocks to
which it does not belong:

#ifdef JAN 1
printf("happy new year!\n");

#if sick
printf("i think i'll go home now\n");

#else
printf("i think i'll have another\n");

#endif
#else

printf("i wonder what day it is\n");
#endif

If the first #endif was missing, error 103 would result. And without
the second #endif, the compiler would generate error 107.

104: #endif with no #if

#endif is paired with the nearest #if, #ifdef or #ifndef which
precedes it (See error 103.)

105: #endasm with no #asm

#endasm must appear after an associated #asm. These compiler­
control lines are used to begin and end embedded assembly code. This
error code indicates that the compiler has reached a #endasm without
having found a previous #asm. If the #asm was simply missing, the
error list should begin with the assembly code (which are undefined
symbols to the compiler).

- err.29 -

Compiler Error Messages Aztec C

106: #asm within #asm block.

There is no meaningful sense in which in-line assembly code can be
neste~ so the #asm keyword must not appear between a paired
#asm/#endasm. When a piece of in-line assembly is augmented for
temporary purposes, the old #asm and #endasm can be enclosed in
comments as place-holders.

#asm
/* temporary asm code * /

/* #asm old beginning * /
/* more asm code * /

#endasm

107: missing # endif

A #endif is required for every #if, #ifdef and #ifndef, even if the
entire source file is subject to a single conditional compilation. Try to
assign pairs beginning with the first #endif. Backtrack to the previous
#if and form the pair. Assign the next #endif with the nearest
unpaired # if. When this process becomes greatly complicate~ you
might consider rethinking the logic of your program.

108: missing # endasm

. In-line assembly code must be terminated by a #endasm in all
cases. #asm must always be paired with a #endasm.

109: #if value must be integer constant

if requires an integral constant expression. This allows both
integer and character constants, the arithmetic operators, bitwise
operators, the un3{Y minus (-) and bit complement, and comparison
tests.

Assuming all the macro constants (in capitals) are integers,

#if DIFF >= ' A'-'a'
#if (WORD &= -MASK) » 8
#ifMAR I APR I MAY

are all legal expressions for use with #if.

110: invalid use of oolon operator

The colon operator occurs in two places: 1. following a question
mark as part of a conditional, as in (flag ?- 1 : 0); 2. following a label
inserted by the programmer or following one of the reserved labels,
case and default.

111: illegal use of a void expression

This error can be caused by assigning a void expression to a
variable, as in this example:

- err.30 -

Aztec C

void funcO;
int h;

h = func(arg);

112: illegal use of function pointer

For example,

int (*funcptr) 0;

funcptr++;

Compiler Error Messages

juncptr is a pointer to a function which returns an integer.
Although it is like other pointers in that it contains the address of its
object, it is not suject to the rules of pointer arithmetic. Otherwise,
the offending statement in the example would be interpreted as adding
to the pointer the size of the function, which is not a defined value.

113: duplicate case in switch

This simply means that, in a switch statement, there are two case
values which are the same. Either the two cases must be combined into
one, or one of them must be discarded For instance:

switch (c) {
case NOOP:

return (0);
case MULT:

return (x * y);
case DIV:

return (x / y);
case ADD:

return (x + y);
case NOOP:
default

return;
}

The case of NOOP is duplicated, and will generate an error.

114: macro redefined

For example,

#define islow(n) (n>=0&&n<5)

#define islow(n) (n>=0&&n<=5)

The macro, islow, is being used to classify a numerical value. When
a second definition of it is found, the compiler will compare the new
substitution string with the previous one. If they are found to be
different, the second definition will become current, and this error
code will be produced

- err.31 -

Compiler Error Messages Aztec C

In the example, the second definition differs from the first in a
single character, '='. The second definition is also different from this
one:

define islow(n) n>=O&&n<=5

since the parentheses are missing.

The following lines will not generate this error:

define NULL 0

define NULL 0

But these are different from:

define NULL"

In practice, this error message does not affect the compilation of
the source code. The most recent "revision" of the substitution string is
used for the macro. But relying upon this fact may not be a wise habit.

115: keyword redefined

Keywords cannot be defined as macros, ~ in:

define int foo

If you have a variable which may be either, for instance, a short or
a long integer, there are alternative methods for switching between the
two. If you want to compile the variable as either type of integer,
consider the following:

#ifdef LONGINT
long i;

#else
short i;

#endif

Another possibility is through a lypedej:

#ifdef LONGINT
typedef long V ARTYPE;

#else
typedef short V ARTYPE;

#endif

VARTYPE i;

116: field width must be > 0

A field in a bit field structure can't have a negative number of bits.

117: invalid 0 length field

A field in a bit field structure can't have zero bits.

- err.32 -

Aztec C Compiler Error Messages

118: field is too wide

A field in a bit field structure can't have more than 16 bits.

119: field not allowed here

A bit field definition can only be contained in a structure.

120: invalid type for field

The type of a bit field can only be of type int of unsigned into

121: ptr/int conversion

The compiler issues this warning message if it must implicitly
convert the type of an expression from pointer to int or long, or vice
versa.

If the program explicitly casts a pointer to an int this message won't
be issued However, in this case, error 122 may occur.

For example, the following will generate warning 121:

char *cp;
int i;

i = cp; /* implicit conversion of char * to int * /

When·the compiler issues warning 121, it will generate correct code
if the sizes of the two items are the sarne.

122: ptr & int not same size

If a program explicitly casts a pointer to an int, and the sizes of the
two items differ, the compiler will issue this warning message. The
code that's generated when the converted pointer is used in an
expression will use only as much of the least significant part of the
pointer as will fit in an into

123: function ptr & ptr not same size

If a program explicitly casts a pointer to a data item to be a pointer
to a function, or vice versa, and the sizes of the two pointers differ,
the compiler issues this warning message.

If the program doesn't explicitly request the conversion, warning
124 will be issued instead of warning 123.

124: invalid ptr /ptr assignment

If a program attempts to assign one pointer to another without
explicitly casting the two pointers to be of the same type, and the types
of the two pointers are in fact different, the compiler will issue this
warning message.

The compiler will generate code for the assignment, and if the sizes
of the two pointers are the same, the code will be correct But if the

- err.33 -

Compiler Error Messages Aztec C

sizes differ, the code may not be correct.

125: too many subscripts or indirection on integer

This warning message is issued if a program attempts to use an
integer as a pointer; that is, as the operand of a star operator.

If the sizes of a pointer and an int are the same, the generated code
will access the correct memory location, but if they don't, it won't.

For example,

char c;
long g;
Ox5c=0; / warning 125, because Ox5c is an int * /
c[i]=O; /* warning 125, because c+i is an int */
g[i] =0; /* error 12, because g+i is a long * /

- err.34 -

Aztec C Compiler Error Messages

3. Fatal Compiler Error Messages

If the compiler encouters a "fatal" error, one which makes further
operation impossible, it will send a message to the screen and end the
compilation immediately.

Out of disk space!

There is no room on the disk for the output file of the compiler.
Previous disk files will not be overwritten by the compiler's assembly
language output. To make room on the disk, it is usually sufficient to
remove unneeded files from the disk

unknown option:

The compiler has been invoked with an option letter which it does
not recognize. The manual explicitly states which options the compiler
will accept. The compiler will specify the invalid option letter.

duplicate output file

If an output file name has been specified with the -0 option and
that file already exists on the disk, the compiler will not overwrite it.
-0 must specify a new file.

too few arguments for -0 option

The compiler expected to find the output filename following the "-
0", but didn't find it. The output file name must follow the option
letter and the name of the file to be compiled must occur last in the
command line.

Open failure on input

The input file specified in the command line does not exist on the
disk or cannot be opened A path or drive specification can be
included with a filename according to the operating system in use.

No input!·

While the compiler was able to open the input file given in the
command line, that file was found to be empty.

Open failure on output

The compiler was unable to create an output fiie. On some
systems, this error could occur if a disk's directory is full

Local table full! (use -L)

The compiler maintains an internal table of the local variables in
the source code. If the number of local symbols in use exceeds the
available entries in the table at any time during compilation, the
compiler will print this message and quit. The default size of the local
symbol table (40 entries) can be changed with the -L option for the

- err.3S -

Compiler Error Messages Aztec C

compiler. Local variables are those defined within braces, i.e., in a
function body or in a compound statement. The scope of a local
variable is the body in which it is defined, that is, it is defined until
the next right brace at its own nesting level

Out of memory!

Since the compiler must maintain various tables in memory as well
as manipulate source code, it may run out of memory during
operation. The more immediate solution is to vary the sizes of the
internal tables using the appropriate compiler options. Often, a
compilation will require fewer than the default number of entries in a
particular table. By reducing the size of that table, memory space is
freed up during compile time. The amount of memory used while
compiling does not affect the size or content of the assembly or object
file output. If this stategy fails to squeeze the compilation into the
available memory, the only solution is to divide the source file into
modules which can be compiled separately. These modules can then
be linked together to produce a single executable file.

- err.36-

Aztec C86 Index

INDEX

Order of chapters in manual

System Dependent Chapters

title code

Overview...... ov

Tutorial Introduction ... tut

The Compiler ... cc

The Assembler .. as

The Linker .. In

Utility Programs .. uti I

Library Functions Overview: 8086 Information libov86

8086 Functions .. lib86

Technical Information .. tech

Unitools ... unitools

Source Level Debugger .. sdb

Assembly Language Debugger ... db

System Independent Chapters

Overview of Library Functions ... libov

System-Independent Functions .. lib

Style ... style

Compiler Error Messages ... err

Index

Index index

- index.1 -

Index Aztec C86

- index.2 -

Aztec C86

ptradd cc.48
=ptrdiff cc.48

A
absolute value lib.16
abstoptr ccA8; lib86.33
access lib86.6-7
accessing data in memory

asm.20
accessing devices libov.8
accessing files

unitools.73-78
acos lib.59-60
adding modules after existing

modules in a library utill6
adding modules at beginning

or end of a library util.16-l7
adding modules to a library

utill5
addr db.13-l5; sdb.12
addresses in ex commands

unitools.67 -68
adjusting the screen

unitools.55
agetc lib. 25-26
aputc libAl-42
arcv utilA
arithmetic operators asm.23
array subscripting style.I8
asctime lib86.55-56
asin lib.59-60
assembler operating

instructions asm.5
assembler options asm.5~9

-186 asm.9
-c asm.9
-ca asm.9
-cs asm.9
-dsym[=const] asm.9
-i asm.6-9
-1 asm.6~9
-la asm.9
-ls asm.9
-0 asm.6~9
-sn asm.9
-x asm.9
-zap asm.2,5,6,9

Index

assembly-language functions
tech. 30-40 "

assembly-language macros
tech.33-38

entrdef tech.36
finish tech.38
internal tech.36
intrdef tech.36
ldptr tech. 36
pend tech. 35
pret tech. 36
procdef tech. 34-36.
retnull tech.38
retptrm tech. 37
retptrr tech.3 7

assert li b86. 8
assign buffer to a stream

lib. 56
atan lib. 59-60
atan2 lib.59-60
atof lib.8
atoi lib.8
atol lib.8
auto indent unitools.6l
aztec to microsoft format

uti1.26

B
backtracing db.9; sdb.9
bdos lib86.9,19
bdosx lib86.l0
boolean expressions

style. 16-17
breakpoints

db. 7-8,16-18,40
sdb. 7-8~I3-l5~38

brk lib86.ll-l2
"buffer size libov86.6
buffered binary input

lib. 20-2 1
buffered output lib. 20-2 1
buffering libov. 10.;.1 1
build and unbuild real

numbers lib.22

C

- index.3 -

Index

c idioms style. 3
c source file cc.6
c86 libraries tech. 25
calloc lib.31-32
case table cc.24
cbreak libov.21
ceil lib.16
ceiling lib.16
change current position

within a file 'lib.29-30
char cc.41
character classification

funtions lib.ll
character-oriented input

libov.I8; libov86.6-7
chdir lib86.18
chmod lib86.13
circle lib86.14
clear db.I9
clearerr lib.15
clock lib86.15
close lib.9,14
close a device or a file

lib.9
close a stream lib.14
closing streams libov.9
cmdlist db. 16; sdb.13
cnm util.5-8
code area tech. 5
codemacros asm.30,60-71
colon commands unitools.89
color lib86.16
command line arguments

libov.4-6
command line arguments

libov86.3
command summary

unitools.85-89
comments style.17
common problems style.15-19
compatablity of Aztec

products cc.42
compiler error checking

cc.50
compiler operating

instructions cc.5
compiler options

cc. 7-10,19,22-23,50

Aztec C86

-a cc.8-9,19
-d cc.19,22
-i cc.I9,22
-0 cc.7,19
-s cc.I9,23
-t cc.9,19
-b cc.19,50

-table manipulation options
cc.19,23-25

-e cc.19,24
-I' cc.I9,23-24
-y cc.19,24-25
-z cc.20,25

-options for the optimizing
compilers cc.20,26-29 .

+f cc.20,26
+c cc.20,26
+n cc.20,26
+d cc.20,26
+df cc.20,26
+0 cc.20,27
+1 cc.20,27
+2 cc.20,27
+r cc.20,27
+u cc.20,27-28
+a cc.20,28-29
+m cc.20,29

-options for the
non-optimizing compilers

cc.21,29-30
+f cc.21,29
+u cc.21,30
+j cc.21,30

concatenating parameters to
parameters asm.48

conditional compilation
statements cc.34-3 7

console i/o libov.17-21;
libov86.6-7

convert ascii to numbers
lib. 8

convert floating point to
ascii lib. 8

cos lib. 59-60
cosh lib.61
cotan lib. 59-60
crc util9
crclist uti1.9

-,index.4 -

Aztec, C86

creat lib. 1 0
create a new file Ii b.l 0
creating a library uti!.13
creating a root and overlays

tech. 20
creating an assembly language

file cc.8
creating an object code file

cc.7
cross development tech.26
csread lib86.17
ctags utility

unitools.77-78
ctime lib86.55-56

D
data formats cc.41-43
default mode libov.7,17,20
default segment attribute-

overriding operators asm.25
default segment asm.15
defensive programming

style. 10
deleting line unitools.57
deleting modules form a

library util18
deleting text

unitools.42-43,56-57
desc codes db.33-35;

sdb.27-30
determine accessiblity of a

file Iib86.6-7
device i/o libov.7

libov86.6
device i/o utilities lib. 28
diff unitools.6-9
directives asm.15-19,31-60

assume asm.15-16,31
bss asm.31-32
codemacro asm.64
else asm.60
end asm.34-35
endif asm.60
endm asm.56
equ asm.35-36
equal sign asm 36
exitm asm.56

extrn asm.17-18,37
global asm.17,18,37
group asm.37
if asm.58
in asm.59
in asm.59
ifb asm.59
ifdef asm.59
ifdif asm.60
ife asm.59
ifidn asm.60
ifnb asm.59
ifndef asm.59
include asm.37-38
irp asm.54-55,56
irpc asm.55,56
label asm.38
largecode asm.38-39
local asm.56

Index

macro asm.44-46,56-57
modrm asm.65
name asm.39
nosegfix asm.65
org asm.39
public asm.16-17,18-19,42
purge asm.57
record asm.42-44,67
relb asm.66
relw asm.66
rept asm.53-54,57
segment and ends

asm.13-14,44
user-defined record

asm.67
disabling options

unitools.80
display commands .db.19-23,40;

sdb.16-20,38
display object file info

uti15
displaying source files

db.9,40; sdb.9,17,38
displaying unprintable

characters unitools.46
dos li b86.19
dostime lib86.55-56
dosx Ii b86.1 0
dot operator to shift

- index.5 -

Index

parameters asm.67
double cc.42
dup lib86.20
duplicating blocks of text

unitools.58-59
dynamic buffer allocation

libov.II,22

E
echo mode libov.2I; libov86.6
editing an existing file

unitools.40-45
editing another file

unitools.74-76
embedded assembler source

tech.39
enabling options

unitools.80
end of a file Iibov86.4
entrdef macro tech.36
errno lib86.44
error messages form linker

In. I 7-22
error messages from ovloader

tech.23
error processing

libov.23-24
evaluation of expressions

style. 16
ex-like commands

unitools.67-69
examine memory lib86.43
execlIib86.21-23
execlp li b86.21-23
executable program tech.4
executing system commands

unitools.79
execv lib86.21-23
execvp lib86.21-23
exit lib86.24
exiting z unitools.39
exp lib.I2-13
exponetial functions

lib. 12-13
expr db. 1 1-12; sdb.ll-12
expression evaluation

style. 5

Aztec C86

expression table cc.24
extended pattern matching

unitools.50-51,80
extracting modules from a

library util.I9-20

F
fabs lib.16
far call asm.13
farcall lib86.25
fcbint lib86.26
fclose lib.14
fdopen lib.17-19
fdup lib86.20
feof lib.I5
ferror lib.15
fexecllib86.27-28
fexecv lib86.27-28
fflush lib.14
fgets lib. 27
file comparison utility

unitools.6-9
file i/o libov.6,9-13,I5;

libov86.4-6
file lists unitools. 70,76
filenames unitools.73
file no lib.15
find source string

db.23,40; sdb.20,38
finish macro tech.38
float cc.42
floating point exceptions

cc.42
floor lib.16
flterr cc.42
flush a stream Ii b.I5
fopen lib.17-19
format lib.37-40
formatted input conversion

lib.49-55
formatted output conversion

functions lib.37-40
fprintf lib.37-40
fputs lib. 43
fread lib. 20-2 I
free lib.31-32,56
freopen lib.I7-19

- index.6 -

Aztec C86

frexp lib.22
fscanf lib.49-55
fseek lib.23-24
ftell lib.23-24
ftime lib&6.29-30
ftoa lib.&
function calls and returns

tech. 32
function key macros

unitools.&3-&4
functions calls style.I3-I4
fwrite lib. 20-2 1

G
generating romable code

tech.41-46
get a string from a stream

lib.27
get time lib&6.15
getc lib.25-26
getchar lib.25-26
getenv lib&6.31
gets lib. 27
getusr lib&6.59
getw lib. 25-26
getwd lib&6.1&
global variables cc.39-4I;

tech.2&-29,30-3I
globally-accessible symbols

asm.I6
gmtime lib&6.55-56
go db. 24-25,40;

sdb.23-24,40;
unitools.41,&3

grep unitools.IO-15
grep options unitools.IO
matching character strings
unitools.I2
matching repeating
characters unitools.I2
matching single characters
unitooIs.II
pattern matching program
unitools.IO-I5
patterns unitools.ll

ground lib86.16

H
help in lb util2I
hex&6 tech.41-46

-j tech.45
-z tech.45
-e tech.45
-0 tech.45
-s tech.45
-p tech.46
-b tech.46

hex&6 utiliO
high operand asm.23

Index

huge arrays 4&-49
hyperbolic functions lib. 6 1

I
immediate macro definition

unitools.63-64
immediate operands asm.I9
include environment variable

cc.IO
index lib. 62-63
indirect macro definition

unitools.64-65
inportb lib86.46
inportw lib86.46
insert commands

unitools.38,43-44,6I
insert mode unitools. 38,6 1
inserting text

unitools.44,61
int,short cc.41
int sp lib86.39-41
intel hex generator uti1.IO
internal macro tech.36
intrdef macro tech. 36
ioctl lib.28; libov.I9
isalnum lib. 1 1
isalpha lib. 1 I
isascii lib. I I
isatty lib.28
iscntrllib.II
isdigi t Ii b.ll
islower lib. 1 1
isprint lib. 1 1
ispunct lib. II
isspace lib. 1 1

- index.7 -

Index

isupper lib. I I

L
labels asm.12-13
large code cc.16
large data cc.17;

tech.6-7,8
lb utiLI 1-21
lb arguments util.I4
lb options utiL II
ldexp lib.22
ldptr macro tech.36
learning c idioms style. 3
libraries cc.l4-15
library module names

util.I3
library order utiL 14
library table of contents

util.I3
line li b86.34
line-oriented input

libov.17-18
lines longer than screen size

unitoolsA6
lineto lib86.32
linker error messages

In. I 7-22
linker options In.9-10

-0 <file> In. 9, I I
-1 <name> In.9,1l
-f <file> In.9,12,19
-t In.9,12
-m In.9,12-13
-n In.9,13
-s <size> In.9,13
-x <size> In.9,13-14
-v In.9,14

-options for segment address
specification In.9,14-16

-b <address> In.9,14-16
-c <address> In. 9,14-16
-d <address> In.9,14-16
-u <address> In.9,14-16

-options for overlay usage
In.lO,16

-r In.10,16
+c <size> In.10,16

Aztec C86

+d <address> In. I 0,16
linking process In.4
list directory util.22-24
list object code uti1.25
loading programs

db. 6-7,25-27,40
sdb.6-7,23,38

local moves unitools.52-55
local symbol table cc.23
local symbols asm.46-47
localtime lib86.55-56
log lib.12-13
logarithm lib.12-13
logical operators asm.24
long ccAI-42
long pointer ccA4-48
long pointer conversion

functions lib86.33
longjmp lib.57-58
low operand asm.23
Is util.22-24
Iseek lib.29-30

M
macros cc.31-37

unitools.63-66,88
make uni tools. 16-33

aborting unitools.26
built-in rules unitools.25
logging commands

unitools.26
macro capability

unitools.22-24
makefile unitools.17-19
standard output unitools.29
starting make unitools.28

malloc lib.31-32,56
marking unitools.54,86
memccpy lib86.34-35
memchr lib86.34-35
memcmp lib86.34-35
memory allocation lib.31-32
memory models cc.II-14
memory modification commands

db.27-28,40; sdb.24-25,38
memory operands asm.20
memory operations lib86.34-35

- index.8 -

Aztec C86

memory-change breakpoints
db.8; sdb,8,38

memset lib86.34-35
missing semicolon style.I5
mkdir lib86.18
mktemp lib86.36-37
mode lib86.38
modes of z unitools.37-38
modf lib.22
modifiers asm.63,69-70
modify memory lib86.43
modularity style.7
monitor lib86.39-4I
movblock lib86.42
moves within c programs

uni tools. 5 3
moving around on the screen

unitools.52
moving blocks unitools.57
moving modules to the

beginning or end
of a library util.I8

moving modules within a
library utilI7

moving text between files
unitools.60

moving within a line
unitools.52-53

movmem lib.33
ms-dos linker tech.27-29
msdos source files cc.6
multi-module programs

cc.I3-I4

N
named buffers unitools.59
names db,5-6; sdb.8
near call asm.I2
nested segments asm.I4
nesting errors style.I7
nodelay libov.I7
non-local gotto lib, 57-58

o
obd util25
obj tech.27-29

obj util26
object file librarian

util.lI-21
offset attribute asm.I2
offset operator asm.28
open lib,34-36
open a stream lib.I7-19
opening files libov86.5
opening files and devices

libov.6,9

Index

operand expressions asm.23
operands and expressions

asm.I9
operands to jump and call

asm.21
operator precedence asm.30
option codes unitools.80
ord uti1.27
order of evaluation

style.I6
order of library modules

In. 5-6
outport lib86.46
outportb lib86.46
overlay code area tech.5
overlay data area tech. 5
overlay usage options

In.IO,16
overlays tech.4-5,II-24
ovloader tech. 15-16, 19-23

+c and +d options tech.I9

p
paging unitooIs.48
palette lib86.16
passing comma-containing

arguments to macros asm.50
passing data to functions

style.I8
passing pointers between

functions style.18
pcz unitools.82
peekb lib86.43
peekw lib86.43
pend macro tech.35
perform bdos call with a far

pointer lib86.IO

- index.9 -

Index

perror Iib86.44
point Iib86.45
pointer cc.41
pointers cc.4I,44-48
pokeb lib86.43
pokew Iib86.43
port Iib86.46
pow Iib.12-13
power lib.12-13
pre-opened devices

libov.4; Iibov86.3
preprocessor statements

cc.31-37
pret macro tech.36
printf lib.37-40
procdef macro tech. 34-36
proc1en symbol asm.68
prof uti1.28
profiler report program

util.28
profiling functions

lib86.39-41
program areas tech.5
program maintenance utility

unitools.16-33
program organization

tech.4-14
ptr operato~ asm.25-26
ptrtoabs cc.48
ptrtoabs lib86.33
push a character back into

input stream lib. 65
put a character string to a

stream Iib.43
putc lib.41-42
putchar Iib.41-42
puterr Iib.41-42
puts lib.43
putw lib.41-42

Q
qsort Iib.44-45
quit db.35,41; sdb.32,39

R
ran lib.46

Aztec C86

random i/o
libov.6,IO; libov86.4

random number generator
lib.46

range db.15-16; sdb.12
range specifiers asm.63,70
raw mode libov.20-21
re-executing macros

·unitools.65
read lib.47
readable code style. 5
reading files unitools.74
realloc lib.31-32
rebuilding a library

uti120
register commands

db.36; sdb.33,39
register usage tech. 27, 33
registers asm.19
relational operators asm.24
relocatable object files

In.3
rename a disk file lib.48
repalcing library modules

util19
repeat last substitution(&)

unitools.69
reposition a stream

lib.23-24
retnull macro tech. 38
retptrm macro tech.37
rindex Iib.62-63
rmdir lib86.18
romable code tech.41-46
root tech.20
rstusr Ii b86. 59
rsvstk Iib86.11-12
run-time errors style.12

S
sbrk Iib86.11-12
scanf lib.49-55
screen functions

lib86.47-50
scrolling

unitools.40-41,44,48
search order of #include

- index.10 -

Aztec C86

files cc.IO
seg operator asm.28
segment address specification

options In.9,14-16
segment override operator

asm.25
segment register asm.22
segmentation asm.I3
segread lib86.51
sequential i/o

libov.6,IO; libov86.4
set asp lib86.14
setbuf lib.56
setjmp lib.57-58
setmem lib.33
setting options for a file

unitools.71
setusr lib86.59
sgtty fields

libov.I9; libov86.7
shared data style.19
shift operators asm.24
shifting text unitools.60
short operator asm.27
signal lib86.52-53
silence library option

uti1.20
sin lib.59-60
single step

db.36,41; sdb.33,39
sinh lib.61
size operator asm.29
small code cc.16
small data cc.17;

tech. 6-7,9-13
sort an array lib.44-45
sort object module list

uti1.27
source dearchiver util.4
special keysunitools.4 7
specifiers asm.62-62,69
sprintf lib.37-40
sqrt lib.12-I3
square root lib.12-13
squeeze an object library

uti1.29
sqz uti1.29
sscanf lib.49-55

stack above heap
tech.6,10,11

Index

stack and heap areas tech.6
stack below heap

tech. 6,9, 10
standard i/o libov.9-13
standard if 0 functions

libov.12-13
starting and stopping z

unitools.37,70-72
starting db db. I I
starting sdb sdb.ll
startup routine termination

codes tech.I4
stat lib86.13
strcat lib. 62-63
strcmp lib.62-63
strcpy lib.62-63
stream status inquiries

lib. 15
string merging cc.39
string operations lib.62-63
string searching

uni too Is.4 1-42,49
string table cc.25
strlen lib.62-63
strncat lib.62-63
strncmp lib.62-63
strncpy lib.62-63
structure assign cc. 37
structured programming

style. 7
substitute command

unitools.68-69
supported language features

cc.31
swapmem lib.33
symbol names asm.11
symbols asm.11-12
symbols related to program

organization tech.13-14
syntax asm.IO-11
sys errlist lib86.44
sys - nerr lib86.44
sysint lib86.25
system lib86.54
system error messages

lib86.44

- index.11 -

Index

system-dependent features
unitools.82

system-independent programs
libov.I8

T
tags unitools.76-77
tan lib.59-60
tanh lib.61
term db.12-13;

uti1.29
terminal emulation uti1.29
termination codes tech.14
text editor unitools.34-89
this operator asm.27
time lib86.55-56
tmpfile lib86.57
tmpnam lib86.58
tolower lib.64
top-down programming

style. 8-9
to upper lib.64
trace mode db.9,19,40
trace mode sdb.9,15,38
trigonometric functions:

lib. 59-60
type operator asm.29

U
unassemble db.37,41;

sdb.34,39
unbuffered and standard i/o

calls libov.7
unbuffered i/o libov.I4-I6
undoing changes unitools.60
ungetc lib. 65
uninitialized data area

tech. 5
uninitialized variables

style. 15
unlink lib.66
using the linker In. 7
utime lib86.29-30

v

Aztec C86

verbose library option
utiL20

verify program assertion
lib86.8

void data type cc.38

W
word movements unitooIs.53
write lib. 67
wri ting files

unitools. 73-7 4
writing machine independent

code cc.42

y
yank unitools.58-59,88

z
z unitools.34-89

accessing files
unitools.73-78

adjusting the screen
uni tools. 55

autoindent unitools.61
colon commands

unitools.89
command summary

uni tools. 85-89
ctags utility

unitools.77-78
deleting line

unitools.57
deleting text

unitools.42-43,56-57
disabling options

uni tools. 80
displaying unprintable

characters unitools.46
duplicating blocks of text

uni tools. 58-59
editing an existing file

unitools.40-45
editing another file

unitools.74-76
enabling options

- index.12 -

Aztec C86

unitools.80
ex-like commands

unitools.67-69
addresses in ex commands

unitools.67-68
substitute command

unitools.68-69
repeat last substi-

tution(&) unitools.69
executing system commands

unitools.79
exiting z unitools.39
extended pattern matching

unitools.50-51,80
file lists

unitools.70,76
filenames unitools.73
function key macros

unitools.83-84
go unitools.4l,83
insert commands

unitools.38,43-44,6l
insert mode

unitools.38,6l
inserting text

unitools.44,6l
lines longer than screen

sIze unitools.46
local moves

unitools.52-55
macros unitools.63-66,88
immediate macro definition

unitools.63-64
indirect macro definition

unitools.64-65
re-executing macros

unitools.65
marking unitools.54,86
modes of z

unitools.37-38
moves within c programs

unitools.53
moving around on the

screen unitools.52
moving blocks

unitools.57
moving text between files

unitools.60

moving within a line
unitools.52-53

named buffers
unitools.59

option codes unitools.80
paging unitools.48
pcz unitools.82
reading files

unitools. 74
scrolling

unitools.40-4l,44,48
setting options for a file

unitools.7l
shifting text

unitools.60
special keys unitools.47
starting and stopping z

unitools.37,70-72

Index

string searching
unitools.4l-42,49

system-dependent features
unitools.82

tags unitools.76-77
undoing changes

unitools.60
word movements

unitools.53
wri ting files

unitools.73-74
yank unitools.58-59,88
z vs vi unitools.8l

- index.13 -

Index Aztec C86

- index.14 -

