














































































































































































































































































LIBGEN Aztec CG6S 

When these functions are needed, you will have to modify exit, 
since it must return to the operating system. But you can probably use 
exit as is, since it closes open 'files and devices in a system-independent 
way and then calls _exit. 

Descriptions of the calling sequences to exit and _exit are 
appended to this chapter. 

2. Building the libraries 

Once you've made modifications to the supplied unbuffered i/o 
functions, you can build your libraries. We recommend that you 
create the following libraries: 

c.lib General purpose functions (cg65-compiled) 
ci.lib General purpose functions (cci-compiled) 
m.lib Floating point functions (cg65-compiled) 
mi.lib Floating point functions (cci-compiled) 

To simplify the creation of these libraries, Aztec CG65 contains 
several "makefiles" that give directions to the make program 
maintenance utility, and a few files that give directions to the lb object 
module librarian. If you followed our recommendations for installing 
Aztec CG65, each of the LIB directory's subdirectories contains a 
makefile that causes make to compile and assemble the subdirectory's 
source files. There is a makefile in the LIB directory that can be used 
on systems having lots of memory, to have make first generate each 
subdirectory's object modules and then make a library. 

Before you can generate the libraries, you must do several things: 

1. In each makefile, modify the rules that define how to convert 
a C source file to an object module, so that the command that 
starts the compiler uses a +G option that correctly defines 
zero-page usage on your system. 

2. Modify the zpage.h file in the INCLUDE directory. This file 
defines the use of zero page for assembly language modules. 

3. You've probably created a subdirectory of the LIB directory, a 
subdirectory that contains your 0\\11 unbuffered i/o modules. 
In this subdirectory you should create a makefile that tells 
nuzke how to generate object modules from your files. 

4. In the LIB directory are four files (c.bld, ci.bld, ntbld, and 
mi.bld), each of which tells lb how to create a library. c.bld 
and ci.bld are used for generating ProDOS versions of c.lib and 
ci.lib, so you will need to modify these files. Some of the 
changes that you'll need to make are these: (1) instead of 
including the Apple I 1 startup routine crtO.r that's in the 
PRODOS directory, include the 65xx ROM startup routine 
rontr that's in the ROM directory; (2) instead of including the 
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ProDOS nuzin routine that's in the shmain.r module in the 
PRODOSdirectory, include the 65xx ROM main routine 
that's in the unuzin.r module in the ROM directory; (3) replace 
the ProDOS unbuffered i/o modules with your own. 

5. The environment variable INCL65 must be set to the name of 
the INCLUDE directory; that is, to the name of the directory 
that contains the include files. The command to do this varies 
from system to system; on PCDOS, it's the set command 

6. If you have a RAM disk. you can speed up the library­
generation process by defining it using the CCTEMP 
environment variable. For more information, see the 
description of CCTEMP in the Compiler chapter. 

You are now ready to create the libraries. If your system has lots 
of memory, you can create a library setting the default or current 
directory to the LIB directory starting make, passing to it the name of 
the library you want created For example, to create c.lib, you would 
enter: 

make c.lib 

For non-UNIX systems, a special makefile (named makepc) is provided 
in libmake.arc that should be used in place of the standard makefile 
(named makefile). To make c.lib using nuzkepc, type 

make -f makepc c.lib 

Once started, nuzke will activate several other copies of make, each of 
which will compile and assemble the files in one of LIB's 
subdirectories; it will then start lb, which will make the specified 
library from the object modules that are in the subdirectories, as 
directed by the appropriate .bid file. 

If your system doesn't have lots of memory (if there's not enough 
memory, nuzke will abort with the message "EXEC failure"), you can 
create and execute batch files that will generate the libraries. A batch 
file will first, for each subdirectory, make that subdirectory the default 
or current directory and then activate nuzke, using the command make 
rei to make cg65-compiled modules, or nuzke int to make cci-compiled 
modules. The batch file will then activate lb, passing to it the name of 
the appropriate .bid file. 

3. Function descriptions 

The System Independent Functions chapter presents the calling 
sequences of most of the functions that are discussed in this chapter. 
The remainder of this chapter presents the calling sequences of the 
other functions. 
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NAME 
sbrk 

SYNOPSIS 

Heap management functions 

Yoid *sbrk(size) 

DESCRIPTION 

BREAK 

sbrk provides an elementary means of allocating and deallocating 
space from the heap. More sophisticated buffer management 
schemes can be built using this function; for example, the 
standard functions malloc, free, etc call sbrk to get heap space, 
which they then manage for the calling functions. 

sbrk increments a pointer, called the 'heap pointer', by size 
bytes, and, if successful, returns the value that the pointer had 
on entry. Initially, the heap pointer points to the base of the 
heap. size is a signed int; if it is negative, the heap pointer is 
decremented by the specified amount and the value that it had 
on entry is returned Thus, you must be careful when calling 
sbrk. if you try to pass it a value greater than 321<, sbrk will 
interpret it as a negative number, and decrement the heap 
pointer instead of incrementing it. 

SEE AlSO 
The functions nuzlloc, free, etc, implement a dynamic buffer­
allocation scheme using the sbrk function. See the Dynamic 
Buffer Allocation section of the Library Functions Overview 
chapter for more information. 

The standard i/o functions usually call nuzl/oc and free to allocate 
and release buffers for use by i/o streams. This is discussed in 
the Standard 1/0 section of the Library Functions Overview. 

Your program can safely mix calls to the malloc functions, the 
standard i/o functions, and sbrk, as long as the calls to sbrk don't 
decrement the heap pointer. Mixing sbrk calls that decrement 
the heap pointer with calls to the nUllloc functions and/or the 
standard i/o functions is dangerous and probably shouldn't be 
done by normal programs. 

ERRORS 
If an sbrk call is made that would result in the heap pointer 
passing beyond the end of the heap, sbrk returns -1, after setting 
the global integer errno to the symbolic value ENOMEM. 

- libgen.l2 -



EXIT (C) Program termination functions EXIT 

NAME 
exit, exit 

SYNOPSIS 
exit( code) 

_exit( code) 

DESCRIPTION 
These functions cause a program to terminate and control to be 
returned to the operating system. 

code is returned to the operating system, as the program's 
termination code. 

exit and exit differ in that exit closes all files opened for 
standard and unbuffered i/o, while _exit doesn't 

- libgen.13-



EXIT (C) Program termination functions EXIT 

- lil>gen.14-



TECHNICAL INFORMATION 

- tech.l -



TECH INFO Aztec CG65 
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Technical Information 

This chapter discusses technical topics. and topics that couldn't be 
conveniently discussed elsewhere. 

It's divided into the following sections: 

I. Memory Organization. Discusses the factors that affect the 
memory organization of a program. 

2. Overlays. Describes overlays: what they are, and how they're 
used 

3. Mixing Assembler and C Routines. Describes how to interface 
assembly language routines with C routines. 

4. Object Code Format. Describes the format of object modules 
and libraries. 

5. The pseudo stack. Describes the pseudo stack that is used by 
programs that have been created by Aztec CG65. 
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1. :Memory Organization 

A ROM program is organized into several sections. The linker lets 
you specify the position of some of these sections, but for a ROM 
system they are frequently positioned as follows: 

ROM 

1 ...................•..•..............................•... 1 top of memory 
I ptrs to power-up I 
I & interrupt routines I 
~ •.•••••••••••••••.••••......••..•..•••••••.••••••••••••• 1 
I Copy of initialized data I 
~ •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 
I Code I 
~-·······················································' 

RAM 

~ •••••••••••••••••.•••••••••••••••••••••••••••••••••••••• 1 
I Heap I 
1 .•••••••••••..••....•..•••••••••••••••••••••••••••••••••• 1 
I Overlay Area I 
1 ......................................................... 1 
I Uninitialized Data I 
I ( & pseudo stack) I 
1 •••••••••••••••••••.••••••••••••••••••••••.••••.......•.• 1 
I Initialized Data I 
1 •••••••••••••••••••••••••••••••••••••••.•••••.••••..••..• 1 

I Page 1: I 
I hardware stack I 
1 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 
I Page 0 I 
1 •.••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 bottom of memory 

The following paragraphs discuss these areas. 

1.1 ROM sections 

1.1.1 The code area 

The code area contains the executable code for a program's root 
segment (ie. for its non-overlay segment). 

1.1.2 Copy of initialized data 

A program's initialized data area resides in RAM and contains 
global and static variables that are assigned an initial value. For 
example, if the following statement occurs outside all functions, then 
the variable var would be placed in the program's initialized data area: 
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int var=l; 

Since the initialized data segment resides in RAM, its contents will 
initially be unknown when the system is turned on. The Aztec CG65 
startup routine sets up this segment, using the copy of the initialized 
data area that resides in ROM above the code segment 

The ROM-resident copy of the RAM-resident initialized data area 
is created automatically by hex65 when it translates the memory image 
of the program, as generated by the linker, into Intel hex records. 

1.1.3 Pointers to the power-up and interrupt rootines 

These pointers define the locations to which the 65xx will transfer 
control when power is turned on, when the processor is reset, or when 
an interrupt occurs. By default, they are generated by hex65 when it 
converts the memory image of the program, as created by the linker, 
into Intel hex records. hex65 sets the addresses of the .nmi, .begin, and 
.irq routines in the nmi power-up/reset, and irq fields, respectively. 

1.2 RAM sections 

1.2.1 The Initialized Data Area 

This area was discussed above. 

1.2.2 The Uninitialized data area 

This area contains the global and static variables that aren't assigned 
an initial value. 

It also contains the area in which the program's pseudo stack is 
placed The "pseudo stack" is a stack simulated by the Aztec CG65 
software to get around the limitations of the 65xx hardware stack (the 
hardware stack can be at most 256 bytes long). 

When a program starts, the Aztec CG65 startup routine 
automatically clears the uninitialized data area. 

1.2.3 The Overlay Area 

A program's overlays are loaded into the overlay area. The size of 
this area is set when you link the program's root segment, to the sum 
of the values specified in the +C and + D options. By default, these 
options are set to zero, resulting in an overlay area that is zero bytes 
long. 

For more information on overlays, see the Overlay section of this 
chapter. 

1.2.4 The Heap 

The heap is the area of memory from which buffers are 
dynamically allocated 
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As defined by the Aztec CG65 startup routine, the heap is I kb 
long. 

1.3 Symbols related to Program Organizadm 

The following global symbols are related to program organization. 
The symbols are given in the form that an assembly language program 
would use to access them. A C module can access the symbols by 
removing the appended underscore from the symbol name. 

_ Corg_ Name of the beginning of the program's code. 

Cend Name of the first byte beyond the program's 
executable code. 

_Dorg_ Name of the beginning of the program's initialized 
data 

Dend Name of the first byte beyond the program's 
initialized data 

_ Uorg_ Name of the beginning of the program's uninitialized 
data 

Uend Name of the first byte beyond the program's 
uninitialized data 

mbot Name of a field containing a pointer to the beginning 
of the program's heap. 

_Top_ Name of a field containing a pointer to the next byte 
to be allocated from the heap. 

End Name of a field containing a pointer to the end of the 
program's heap. 

1.4 For more informadon 

For more information on the positioning of a program's segments, 
see the Tutorial chapter and the Linker chapter's discussion of 
segment-positioning options. 
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2. Overlay Support 

In order to allow you to run programs which are larger than the 
limited memory size of a microcomputer, Manx provides overlay 
support To use this feature, you must rewrite the unbuffered i/o 
functions whose source is provided with Aztec CG65. This feature 
allows you to divide a program into several segments. One of the 
segments, called the root segment, is always in memory. The other 
segments, called overlays, reside on disk and are only brought into 
me-mory when requested by the root segment 

If an overlay is in memory when the root requests that another be 
loaded, the newly specified overlay replaces the first in memory. 

Overlays can also be "nested"; that is, an overlay at one level can 
call another overlay nested one level deeper. However, an overlay 
cannot call an overlay which is at the same level 

Figure 1 shows a program, run as a single module, that can be 
logically divided into three segments. Figure 2 shows the same 
program run as an overlay. In figure 2, module 1 and module 2 occupy 
the same memory locations. A possible flow of control would be for 
the base routine to call module 1, module 1 then returns to the root 
and the root calls module 2, module 2 returns to the root and the root 
calls module 1 again. Module 1 then returns to the root and the root 
exits to the operating system. 

Notice that all overlay segments must return to their caller and that 
overlays at the same level cannot directly invoke each other. 

1-----------------------------1 
Ox800 I root segment I 

1-----------------------------1 
Ox9FO I module 1 I 

1-----------------------------1 
Ox1C20 I module 2 I 

1-----------------------------1 
Figure 1 

1-----------------------------1 
Ox800 I root segment I 

1-----------------------------1 
Ox9FO I I Ox9FO 
1---------------------------1 I -----------------------------1 
I module 1 II module 2 I 
1---------------------------1 1------------------------------1 

Figure 2 
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21 Calling an Overlay 

A program segment (root or overlay) activates an overlay by calling 
the Manx-supplied function ovloader, which must reside in the root 
The call has the form 

ovloader(ovlyname, pi, p2, p3, ... ) 

where ovlyname is a pointer to a character string identifying the 
overlay name, and p1, p2, p3, ... are parameters that are to be passed to 
the overlay as its first, second, third, ... parameters. 

ovloader derives the name of the file containing the overlay from 
the string pointed at by ovlyname, by appending the extension .ovr to 
it 

We provide you with the source to ovloader. When you compile it, 
you define the directories in which it will look for overlays: compiling 
it with the option -DPATH will cause it to search all directories 
specified in the PATH environment variable; compiling it without this 
option causes it to search just the current directory. If you create an 
overlaid program that will run under ProDOS outside of the SHELL 
environment or that will run under DOS 3.3, you must use a version 
of ovloader for it that looks for overlays in just the current directory, 
since environment variables are only available to programs running in 
the SHELL environment 

Each overlay must contain a function named ovmain, which you 
must write and which can be different for each overlay, and must also 
contain the Manx-supplied function named ovbgn. When an overlay is 
loaded, ovloader calls the overlay's ovbgn function, which in turn calls 
the overlay's ovmain function, passing to it the second, third, ... 
arguments that were passed to ovloader. 

When ovmain completes its processing, it simply returns. ovloader 
then returns to the caller, returning as its value the value that was 
returned by ovmain. 

An overlay can access any global functions and variables that are 
defined in the root segment and in the overlays that are currently 
active. For example, if the root calls overlay ovly 1, which calls overlay 
ovlyll, which calls overlay ovly111, then ovly111 can access the global 
variables and functions that are defined in the root, in the overlays 
ovly 1 and ovly 11, and in itself. But if the root also calls overlay ovly2, 
ovly111 cannot access the global functions and variables that are in 
ovly2, since ovly2 is not active when ovly 111 is. 

22 Creating a root and its overlays 

To create a root and its overlays, the linker must be run several 
times, once to create the root, and once for each overlay. Each 
program segment (root or overlay) will be placed in a separate disk 
file. 
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The root must be created first When overlays are nested, an 
overlay that itself calls overlays must be linked before the overlays that 
it calls. 

When creating a program segment (root or overlay) which calls an 
overlay, the option -R must be specified; this causes the linker to 
generate a symbol table for use in linking the called overlay, placing it 
in a file whose filename is the same as that of the first file specified in 
the command line and whose extent is .rsm When an overlay is 
linked, the symbol table file of the program segment that calls the 
overlay must be included in the linkage of the overlay. 

When the root module is linked, the linker has to reserve some 
space into which the overlay can be loaded This is done using the +C 
and + D linker options, which define the amount of space needed for 
the overlay code and data, respectively. If overlays are nested, a called 
overlay is located in memory immediately following the calling 
overlay. The amount of space reserved for the overlays must be 
enough to hold the longest 'thread' of overlays. 

2.3 Example 1: Noo-nested Overlays 

This example demonstrates overlay usage when the overlays are not 
nested The root segment, which consists of the function main and any 
necessary run-time library routines, behaves as follows: 

I. It calls the overlay ovly1, passing as a parameter a pointer to 
the string "first message". 

2. It prints the integer value returned to it by ovly1; 
3. It calls the overlay ovly2, passing a pointer to the string 

"second message"; 
4. It prints the integer value returned to it by ovly2. 

The overlay ovly 1 consists of the function ovly 1, the Manx function 
ovbgn, and any necessary run-time library routines. It prints the 
message "in ovly 1" plus whatever character string was passed to it by 
main. 

The overlay ovly2 consists of the function ovly2, the function 
ovbgn. and any necessary run-time library routines. It prints the 
message "in ovly2", plus whatever character string was passed to it by 
main. 
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Here then is the main function: 

main() { 
int a; 

} 

a = ovloader("ovly 1 ","first message"); 
printf("in main. ovlyl returned %d\n", a); 
a= ovloader("ovly2","second message"); 
printf("in main. ovly2 returned %d\n",a); 

Here is ovlyl: 

ovmain(a) 
char *a; 
{ 

} 

printf("in ovlyl. %s\n",a); 
return 1; 

Here is ovly2: 

ovmain(a) 
char *a; 
{ 

} 

printf("in ovly2. %s\n",a); 
return 2; 

Aztec CG6S 

The following commands link the root (which is in the file root.c) 
and the overlays: 

ln65 -R +C 4000 +D 1000 rootr ovloader.r -lc 
ln65 ovlyl.r ovbgn.r rootrsm -lc 
ln65 ovly2.r ovbgn.r rootrsm -lc 

The command to link the root reserves Ox4000 bytes for the 
overlay's code and OxlOOO bytes for it's data Techniques for 
determining this value are discussed below. 

When the segments are generated and the root activated, the 
following messages appear on the console: 

in ovly l. first message. 
in main. ovly 1 returned l. 
in ovly2. second message. 
in main. ovly2 returned 2. 

2.4 Example 2: Nested Overlays 

In this example, there are three segments: a root segment, root, and 
two overlays segments, ovlyl and ovly2. root calls ovlyl, which calls 
ovly2. ovly2 just returns. 
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Here is the root 

main() 
{ 

Overlay Support 

ovloader("ovly I", "in ovlyl "); 
} 

Here is ovlyl: 

ovmain(a) 
char • a; 
{ 

} 

printf("%s\n",a); 
ovloader("ovly2", "in ovly2"); 

Here is ovly2: 

ovmain(a) 
char *a; 
{ 

printf("%s\n",a); 
} 

TECH INFO 

The following commands link the root and the two overlays: 

ln65 -R rootr ovloader.r -lc 
ln65 -R ovlyl.r ovbgn.r rootrsm -lc 
In65 ovly2.r ovbgn.r ovlyl.rsm -lc 

When executed, the following messages appear on the console: 

in ovlyl 
in ovly2 

2.5 Determining the size cA the overlay area 

When you link the root module, you will have to know how much 
memory to reserve for the overlay, that is, you will have to know how 
large the overlay is. But since the overlays haven't been linked yet, 
how can you know how much space is needed for overlays? 

The easiest way is to guess. That is, estimate the size and go ahead 
and link the root and the overlays, keeping track of the size of the 
code and data for the overlays as reported by the linker. 

After all overlays have been linked, the size of the area needed for 
overlays is the size of the largest overlay (if overlays aren't nested) or 
the size of the longest 'thread' of overlays (if they are nested). You can 
then go back and relink the root, if necessary, with this value. You 
won't have to relink any overlays, since the +C and +D options don't 
affect the position of the overlays in memory. 
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26 Error messages from ovloader 

If an error occurs while loading an overlay, ovloader will print a 
message of the form 

Error %d loading overlay: %s 

where %d is a number defining the error and %s is the name of the 
overlay. The error codes and their meanings are: 

10 Can't open overlay file 
20 Can't read overlay header record 
30 Invalid header record 
40 Overlay code & data overlaps with heap 
50 Error reading overlay 

2 7 PO§sible Problems 

A possible source of difficulty in using overlays concerns initialized 
data. In the following program module, a global variable is initialized: 

inti= 3; 

function() 
{ 

return; 
} 

The initialization of "i" is performed by the linker, rather than at 
run time. In the same program, the following module is allowed: 

int i; 

main() 
{ 

function(); 
} 

The global variables in each module refer to the same integer, "i". 
At link time, this variable is set to the value 3. Although this works 
when the two modules are linked together, a problem arises when the 
first module is linked as an overlay: 

ln65 func.r ovbgn.r main.rsm -lc 

From the .rsm file, the linker knows that "int i" has been declared 
in main.r, the root But it tries to initialize "i" from the statement in 
the func.r module. This attempt fails because the variable "i" is part of 
main.r, a module which is not included in the linkage. 

An attempt to initialize, in an overlay, a variable which has been 
declared in the root will produce an error: 

attempt to initialize data in root 
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The simple solution is to change the statement, "int i = 3", to the 
following: 

int i; 
i = 3; 

This assignment will be performed at run time, so that the linker 
does not try to perform an initialization. 

2.8 Source 

The source for the ovloader and ovbgn functions are in the files 
ovld.c and ovbgn.a65. ovid must be compiled by cg65; as mentioned 
above, it can be compiled with or without the option -DPATH, as 
defined above. ovbgn must be assembled using as65. 
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3. Interfacing to Assembly Language 

This section discusses assembly-language functions that can call, or 
be called by C-Ianguage functions. 

3.1 Naming Convention 

The compilers translate a global function or variable name into 
assembler by truncating it to contain no more than 31 characters, 
appending an underscore character ' ' to the truncated name, and 
then generating a public directive for the resultant name. 

For example, the following assembly language statements define the 
entry point to an assembly language function that would be referred to 
in a C language program using the name sum: 

public sum_ 
sum ;entry point to sum 

3.2 Calling and Returning 

On entry to a function, information about the call are at the top of 
both the 6502 hardware stack and the pseudo stack 

At the top of the 6502 stack is the function's primary return 
address; this is the address to which the function should return by 
issuing an rts instruction. A non-reentrant function (ie, a function that 
doesn't call itself) can leave its return address on the 6502 stack and 
then return by issuing the 6502 rts instruction. For example, the very 
simplest assembly language function, which does nothing but return to 
the caller, would consist of just an rts instruction: 

public nop_ 
nop_ rts 

Because of limitations of the 6502 stack, a reentrant function 
should save its return address on the pseudo stack When done, it 
should return by doing an indirect jmp to the location whose address is 
one greater than the saved address. 

3.3 Returning a value 

A function can return an int or long value by setting the value in 
pseudo register RO, which is located in memory page 0. (The equ 
statements that defines RO and all the other 0 page locations used by 
Aztec C-generated programs are in the file zpage.h). The bytes of the 
value are stored in order, with the least significant byte at address 8 
and the most significant byte at the highest addressed location. 

For example, here's a function that always returns the int value 1: 
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ins txt "zpage.h" 
public one 

one Ida #l 
sta RO 
Ida #0 
sta RO+l 
rts 

3.4 Passing parameters 

On entry to a function, the parameters that are being passed to the 
function and a secondary return address are on the pseudo stack, and 
are accessed using the field named SP that is located in memory page 0 
and that points to the top of the pseudo stack Note: as with RO, the 
equ statement that defines SP is in the file zpage.h. 

At the top of the pseudo stack is the two-byte secondary return 
address. This is a different address from the return address that is on 
the 6502 stack - a function should return using the address that's on 
the 6502 stack The secondary return address is discussed in the 
section of the Tech Info chapter that discusses the pseudo stack 

Above the secondary return address on the pseudo stack are the 
parameters that are being passed to the function. The function 
parameters are in order on the pseudo stack. with the first parameter 
immediately following the secondary return address, the second 
parameter following the first, and so on. The bytes for a parameter are 
also on the pseudo stack in order, with a parameter's least significant 
byte at the lowest address and its most significant byte at the highest 
address. 

For example, suppose the function sum is passed two parameters, as 
follows: 

sum(argl, arg2); 

On entry to sum , the pseudo stack will look like this (SRA means 
"secondary return address"): 
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1-----------------------------1 
I I 
1-----------------------------1 
I arg2, high byte I 
1-----------------------------1 
I arg2, low byte I 
1-----------------------------1 
I arg 1, high byte I 
1-----------------------------1 
I argl, low byte I 
1-----------------------------1 
I SRA, high byte I 
1-----------------------------1 
I SRA, low byte I <·· SP 
1-----------------------------1 

3.5 An Example 

The following assembly language function, named sum. is passed 
two ints as arguments. It returns their sum as its value. 

ins txt "zpage.h" 
public sum 

sum clc 
ldy #2 
Ida (SP),Y 
ldy #4 
adc (SP),Y 
sta RO 
ldy #3 
Ida (SP),Y 
ldy #5 
adc (SP),Y 
sta RO+l 
rts 

3.6 Page 0 Usage 

A 6502 program makes extensive use of memory page 0. An 
assembly language 6502 function should obey the following restrictions 
on its usage of memory page 0 locations: 

• It may use, without preserving, the two-byte-long VAL field 
and the following four-byte-long fields: VAL, RO, Rl, R2, R3, 
R4, andTMP. 

• It must preserve the contents of the SP, FRAME, and 
LFRAME (alias PC) fields and of the 16-byte REGS field 

These locations are defined in the me zpage.h. 
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3.7 Writing Pr®"ams that motain only Assembler 

There are several topics concerning the linker which are important 
if the assembler and linker are to be used without any compiled code. 
The linker automatically creates several symbols that can be of use to 
an assembly language program. defining the beginning and end of the 
various program segments. These are described in the Memory 
Organization section of this chapter. 

The entry point to a program is defined using the assembly 
language statement 

entry loc 

where foe is the name of the symbol where program execution is to 
begin. If a module containing an entry statement isn't encountered by 
the linker, it will set the program's entry point to the beginning of its 
code segment For a discussion of the startup routines that are 
provided with Aztec C65, see the Command Programs section of this 
chapter. 

3.8 Mixing C and Assembler in one Module 

To include assembly language source in a C language module, 
surround the assembly language code with #asm and #endasm 
directives. 

Finding a good example where this construct is necessary is very 
difficult, but here's a possible example: 

rotate( arg) 
{ 

register int i; 

i = arg; 
#asm 

Ida $81 
rol A 
rol $80 
rol $$1 

#endasm 
return(i); 

} 

This routine rotates a two byte quantity one bit to the left This 
operation is messy in C and in a time critical application not feasible 
to make an assembly language subroutine. This routine is not a good 
example, since it would be better to write the entire thing in assembly. 
However, in the middle of a larger routine, it might conceivably be 
usefuL This facility is provided as a last resort and is generally not 
recommended as it is completely non-portable. 
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4. Object module foonat 

This section describes the format of object modules and libraries. 
The symbols and structures referred to in this paper are defined in the 
header file object.h. 

4.1 Object Module Format 

An object module contains four sections: header, code, table of 
named symbols, and table of unnamed symbols. These sections are 
described in the following paragraphs. 

4.1.1 1be Header Sectim 

The header section of an object module has the following structure: 

struct module { 

}; 

int m magic; ;• type of object module • I 
char m-name[ 8];/* module name • I 
unsigned short m-code; ;• module's code size • I 
unsigned short m-data; /* module's data size • I 
unsigned short m -static; ;• module's 1m data size • I 
unsigned short m-global; /*named sym tbl off.* I 
short m-ngloOOI;/* # of named symbols • I 
unsigned short m -local; /*unnamed sym tbl off. • I 
short m-nlocal; /*#of unnamed symbols*/ 
unsigned short m-end; /* unnamed sym tbl end* I 
unsigned short m-next; ;• offset to next module • I 
unsigned short m = nfix /* # segment fixes required • I 

The following paragraphs discuss the fields within the header structure. 

m_magic 

m name 

Each of the different object module-related files created by 
the Aztec C software begins with the m magic field, which 
contains a "signature" that identifies the file's contents. 
m_magic can have the following values: 

M MAGIC Object module created by the assembler 
M-OVROOT Rsm file created by the linker 
M LIBRARY Library of object modules 

Contains the name of the object module. For object modules 
created by the assembler and for rsm files, this field normally 
contains null characters. 

m _code, m _data, and m _static 

Contain the size, in bytes, of an object module's code, data 
and uninitialized data segments, respectively. 
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m_global and m_nglobal 

m_global contains the offset, in bytes, from the beginning of 
the module to the module's table of named symbols. 
m_nglobal contains the number of entries in this table. 

m local and m nlocal 

m end 

m next 

m local contains the offset, in bytes, from the beginning of 
the module to the module's table of unnamed symbols. 
m nlocal contains the number of entries in this table. 

m_end contains the offset, in bytes, from the beginning of 
the module to the end of its table of unnamed symbols. 

m_next contains the offset, in bytes, from the beginning of 
the module to the end of the module. 

4.1.2 Symbol Tables 

An object module contains two types of symbols: unnamed and 
named An 'unnamed symbol' is a symbol whose name begins with a 
period followed by a digit A 'named symbol' is any symbol that is not 
unnamed 

An object module has two symbol tables, one containing its named 
symbols, and the other its unnamed symbols. A symbol table contains 
entries, each of which describes one of the module's symbols. The 
entry for a symbol has the following structure: 

struct symtab { 
char s _type; 
char s flags; 
unsigned short s =value; 

} 

I* type of symbol • I 
j* attributes of symbol • I 
j* another attr of symbol • 1 

In addition, the entry for a named symbol is followed by a null­
terminated string, which is the symbol's name. 

The following paragraphs discuss the fields of the symtab structure. 

s_type 

The s type field in a symbol's table entry defines the type of 
the symbol Possible values: 

S A.BS Symbol was defined to be a constant 
value, using the assembler's equ 
directive. 

S_CODE Symbol was defined within the code 
segment 

S DATA Symbol was defined within the data 
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s_flags 

s value 

S UND 

S BSS 

segment 
. Symbol was used but not defined within 
the program. Symbols that are defined 
using the assembler's public directive 
but aren't defined in any statement's 
label field have this type, as do symbols 
defined using the assembler's global 
directive. The directive used to define 
a S UND symbol can be determined 
from the symbol's s_value field, as 
defined below. 
Symbol was defmed using the 
assembler's bss directive. 

This field defines other attributes of a symbol. Possible values: 

S GLOBL Set for symbols specified in public and 
- global directives. 

S FIXED Set for symbols defined in some 
statement's label field 

The meaning of this field depends on the type of the symboL 
Symbol types and their associated values are: 

s type 
S-ABS 

S CODE 

S DATA 

S BSS 

S UNO 

Meaning of s value 
Value specified for the symbol in the 
equ directive. 
Offset of the symbol from the beginning 
of the module's code segment 
Offset of the symbol from the beginning 
of the module's data segment. 
Size, in bytes, of the symbol as defined 
in the bss directive. 
For an S UND symbol, s value is zero 
if the symbol was defined in a public 
directive and non-zero if it was defined 
in a global directive. For a global­
defined symbol, s value contains the 
value specified in -the directive's size 
operand 

4.1.3 The Code Section 

The code section of an object module contains a translated version 
of the program. This format can be efficiently processed by the linker 
as it generates an executable version of the program. It contains a 
sequence of items, each of which directs the action of the linker. For 
example, some items contain actual code and data, which the linker 
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places in the output file, some cause the linker to reserve space in the 
output file, and some just pass information to the linker. 

The linker builds several segments of a program simultaneously: a 
code segment, data segment, and an uninitialized data segment 
Exactly one of these segments is said to be 'selected' at a time. There 
are loader items that select a segment 

The linker maintains a location counter for each of the segments 
that it is building. When a loader item requests that information be 
placed in the program or that space be reserved in it, the linker 
performs the requested operation in the current location of the 
currently-selected segment 

A loader item is a sequence of one or more bytes, with the first 
byte containing a code that identifies the item. Some codes are four 
bits long, and some are eight bits long; in the former case, the code 
occupies the most significant four bits of the byte. 

Frequently, a loader item is two bytes long, with the item's code in 
the high order four bits of the item's first byte and a value in the other 
12 bits. In this case, the value's least significant four bits are stored in 
the first byte's least significant four bits, and the value's most 
significant eight bits are stored in the second byte. We call this format 
"12-bit packed". 

Descriptions of the loader items follow. 

USECODE - Select code segment 

The USECODE loader item selects the code segment Data 
generated by loader items that follow the USECODE item will 
be placed in the code segment until another segment is 
selected 

The code for a USECODE loader item is 8 bits long: Oxf4. 

USEDATA - Select initialed data segment 

The USED AT A loader item selects the initialized data 
segment Data generated by loader items that follow the 
USEDATA item will be placed in the code segment until 
another segment is selected 

The code for the USED AT A loader item is Oxf5. 

ABSDAT - Absolute data 

The ABSDAT loader item defines a sequence of bytes that the 
linker is to output 'as is' to the current location in the 
currently-selected segment 

The loader item's first byte contains the code identifier, I, 
in the most significant four bits, and the number of bytes to 
be output, less one, in the least significant four bits. Thus, 
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this item can define one to sixteen bytes of absolute data 
The remaining bytes in the item are the absolute data 

For example, the following ABSDAT A loader item defines 
the three bytes AI, B2, and C3: 

I2 AI B2 C3 

LCLSYM - local (ie, unnamed} symbol 

The value of a LCLSYM loader item is the address at which 
an unnamed symbol is located in memory. 

The item is two bytes long, with the item's code, 6, in the 
first byte's most significant four bits. The item's other twelve 
bits contain the number of the symbol's entry in the local 
symbol table, in I2-bit packed format 

For example, given the assembly language code 

dw .98 
.98 dw 12 

with .98 occupying the second entry in the table of unnamed 
symbols, the following code would be generated for the dw 
.98: 

61 00 

GBISYM - Global Symbol 

The GBLSYM loader item is just like LCLSYM except that it 
references an entry in the global symbol table rather than the 
local symbol table. 

The code for GBLSYM is the four-bit value 7. 

SPACE - Reserve space 

The SPACE loader item reserves a specified amount of space 
at the current location in the currently-selected segment 

The item is two bytes long, with the item's code, 8, in the 
most significant four bits of the item's first byte. The other 
twelve bits contain the number of bytes to reserve, less one, 
in 12-bit packed format 

For example, the following loader item reserves 5 bytes: 

84 00 

CODEREF - Code segment offset 

The CODEREF loader item defines an offset from the 
beginning of the module's code segment The loader item has 
as its value the absolute address corresponding to that offset 
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The CODEREF loader item is in two bytes, with the 
CODEREF code, Oxa, in the high-order four bits of the item's 
first byte. The item's other 12 bits contain the offset, as a 
positive number, in 12-bit packed format 

DATAREF - Data segment offset 

The DATAREF loader item is the same as the CODEREF 
loader item, except that the offset is relative to the beginning 
of the module's data segment 

The code for DATAREF is Oxb. 

BSSREF - BSS segment offset 

The BSSREF loader item is the same as the CODEREF loader 
item, except that the offset is relative to the beginning of the 
module's bss segment 

The code for BSSREF is Oxc. 

LRGCODE - Code segment offset, I~ fcrm 

The LRGCODE loader item takes a 16-bit value that 
represents an offset from the beginning of its code segment, 
and generates as its value the absolute memory address of the 
location. 

The loader item is in three bytes. The first byte contains 
the item's 8-bit code, Oxf7, the second contains the offset's 
least significant eight bits, and the third contains the offset's 
most significant eight bits. 

LRGDATA - Data segment offset, large fcrm 

The LRGDATA loader item is the same as LRGCODE except 
that the offset is relative to the beginning of the module's data 
segment 

The code for the LRGDATA loader item is Oxf8. 

LRGBSS - BSS segment offset, large form 

The LRGBSS loader item is the same as LRGCODE except 
that the offset is relative to the beginning of the module's BSS 
segment 

The code for the LRGBSS loader item is Oxfb. 

S~U..INT - small integer 

The SMLINT loader item defines an integer between 0 and 
15, inclusive. This item can be used by itself or as an element 
of an EXPR loader item 

The loader item consists of a single byte. Its most 
significant four bits are the item's code, 3; and the least 
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significant four bits are the integer value. 

For example, the following defines the integer value 8: 

38 
Sl\fi..NEG - Small negative integer 

The SMLNEG loader item defines a negative integer between 
-1 and -16 inclusive. It can be used by itself or in an EXPR 
loader item. 

The loader item is a single byte: the high order 4 bits are 
the item's code, 4. The low order four bits are the absolute 
value of the integer, less I. 

For example, the following defines the negative value -8: 

47 

MEDINT 

The MEDINT loader item defines an integer in the range 
-2048 to 2047, inclusive, that can be used by itself or in an 
EXPR loader item. 

The item consists of two bytes, with the high-order four 
bits of the least significant byte containing the item's code, 5, 
and the remaining twelve bits defining the value, in 12-bit 
packed format. 

The value is in 'excess-2048' notation. The number 
actually in the 12-bit field is an integer between 0 and 4095; 
the integer denoted by the item is derived from the actual 
integer by subtracting 2048 from it 

For example, the following represents the value -1024: 

50 40 

LRGINT - Large integer 

The LRGINT loader item defines an integer in the range 
-32K to +321<, for use in an expression loader item. 

The item consists of three bytes. Its first byte contains the 
8-bit code identifying the item, Oxf3. The other two bytes 
contain the value, in two's-complement notation. 

EXPR - Evaluate expression 

The EXPR loader item has as its value the 16-bit value of the 
expression that follows it The size of the loader item 
depends on the size of the items that comprise the expression. 
The most significant four bits of the item's first byte contains 
the code for the loader item, 2, and the least significant four 
bits contain a code for the operation that is to be performed 
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on the loader items that follow. The codes and their 
corresponding values and operations are: 

code value operation 
ADD 1 Add the two loader items that follow 
SUB 2 Subtract the following two loader items 
MUL 3 Multiply the following two loader items 
DIY 4 Divide the first item that follows by the 

MOD 5 

AND 6 
OR 7 
XOR 8 

RSH 

LSH 

NOT 
NEG 

9 

10 

11 
12 

second 
Compute the modulus of the first item 
relative to the second 
Logical AND of the following two items 
Logical OR of the following two items 
Exclusive OR of the following two 
items 
Right shift first item the number of bits 
defined by second item 
Left shift first item the number of bits 
defined by the second 
Logical NOT of item that follows 
Compute two's complement of the item 
that follows 

The items that can follow an EXPR item are SMLINT, 
MEDINT, LRGINT, LCLSYM, GBLSYM, CODEREF, 
DATAREF, BSSREF, LRDCODE, LRDDATA, LRDBSS, and 
another EXPR 

For example, given the assembly language code 

dw a+4 

with the entry for a being the fourth entry in the table of 
named symbols, the following loader items would be 
generated: 

21 73 00 34 

As mentioned above, an EXPR can have another EXPR as 
one of its loader items. In this case, the inner EXPR is 
evaluated, using the loader items that follow it, and then the 
outer EXPR is evaluated, using the resultant value of the 
inner EXPR as one value and whatever loader items are left 
for the other values. The loader items for the entire 
expression are thus in prefix-Polish notation. For example, 
the above expression, a+4, is represented by the loader items 
that correspond to 

+a4 

And the expression 
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(a+b)*c 

Aztec CG6S 

would be represented_ by loader items that correspond to 

*+abc 

BEXPR - Evaluate byte expression 

The BEXPR loader item has as its value the 8-bit value of the 
expression that follows it BEXPR has an 8-bit code, Oxfl. 
BEXPR doesn't have an extra four bits in which an operation 
code can be placed; thus, to generate an 8-bit value from an 
expression, a BEXPR loader item will usually precede an 
EXPR loader item that is in turn followed by the loader items 
for the expression. 

BREL - ampute offset frmn location counter, byte form 

The BREL loader item takes a relocatable value that 
represents a location in the module and generates the offset of 
the location from the current location counter. 

The BREL loader item begins with a 8-bit code, Oxf2. It's 
followed by loader items representing the location. 

For example, if the symbol abc is the fourth symbol in the 
global symbol table, then the loader items to generate the 
offset of the location that is four bytes beyond abc are 

f2 21 73 00 34 

WREL - compute offset from location counter, word fonn 

The WREL loader item is the same as BREL except that it 
generates a 16-bit value instead of an 8-bit value. 

STARTAD - Define program start address 

The STARTAD loader item defines the address at which a 
program containing the module is to begin execution. 

The item begins with the item's 8-bit code, Oxf6. It's 
followed by loader items identifying the starting address; these 
can be GBLSYM, LCLSYM, EXPR, or any of the other 
"expression items" mentioned above. 

INTJSR - Generate opoode for a subroutine call 

The INTJSR loader item is translated by the linker into a 
machine-specific opcode that will cause a subroutine to be 
called The loader item has the value Oxf9. 

The instructions in a function that has been compiled with 
the interpretive compiler consist of a call to the Aztec 
interpreter routine followed by the function's other 
instructions. This first instruction is directly executed by the 
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machine; the function's other instructions are in a pseudo 
code that is indirectly executed, by the Aztec interpreter. 

It is desirable to allow the interpretive compiler to 
generate object modules that can be executed on different 
machines, and to allow a single object module generated using 
this compiler to be linked for execution on different 
processor chips. To support this, the interpretive compiler 
generates as a function's first instruction a special call 
instruction, in the pseudo code assembly language, to the 
interpreter. The pseudo code assembler translates this 
instruction into an INTJSR loader item followed by a 
GBLSYM loader item that references the interpreter routine. 
The machine-specific linker then translates this pair of loader 
items into a machine-specific call to the interpreter. 

TIIEEND - End of rode 

The lHEEND loader item identifies the end of the code 
section of the object file. 

The code for the item is 00. 

4.2 Object Library Format 

A library of object modules consists of the object modules and a 
directory of symbol names. 

4.2.1 Object Modules In a Ubrary 

When an object module is placed in a library its sections are 
reorganized but the contents of the module are left unchanged (with 
the exception of the module's header, whose fields are modified to 
reflect the reorganization). The module's header still is at the 
beginning of the module. This is followed by the table of named 
symbols, the table of unnamed symbols, and the code section. 

The header is modified to define the positions of the tables in the 
reorganized module, and the module is given a name in its m_name 
field The name is derived from the name of the file that contained 
the module by removing the file name's extension. 

4.2.2 Library Dictionary 

A library's dictionary consists of one or more blocks that are 
chained together. A block has the following structure: 

struct newlib { 
short nl magic; 
unsignedshort nl next; 
char nl_dict[LBSIZE]; 

I* magic number for libraries *I 
!* loc of next dir block *I 
I* dictionary for block *I 
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nl diet contains entries, each of which defines one symbol that is 
defined in a library module. The entry for a symbol consists of a short 
int that defines the position of the module that defines the symbol (the 
absolute location at which the module begins, divided by 128), and a 
null-terminated string that is the symbol's name. 
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5. 1he pseudo stack 

Information in the zero page and in the pseudo stack can be used in 
conjunction with a linker-generated symbol table to help debug a 
program. For example, when a program mysteriously aborts and exits 
to the monitor, this information can be used to determine where the 
program was and how it got there. 

During the execution of a program, the pseudo stack contains a list 
of "frames", each of which contains information about a function that 
has been called but hasn't returned A function's frame defines the 
parameters that were passed to it, the address to which it will return, 
the values of its local variables, information about the function that 
called it, and other information. 

At the top of the pseudo stack is the frame for the "active" 
function; that is, about the currently-executing function. Above that is 
the frame for the function that called the active function; above that is 
the frame for the function that called the function that called the 
active function, and so on, back to the frame for the first function 
called by the program's startup code. 

A function's frame has the following organization: 

1-----------------------------1 
I parameters I 
I passed to function I 
1-----------------------------1 
I secondary I 
I return addr I 
1-----------------------------1 
I calling func's I 
I page 0 info I 
I & mise info I 
1-----------------------------1 <-- FRAME 
I caller's register I 
I variables I 
I (cg65 funcs only) I 
1-----------------------------1 <-- LFRAME+OxlOO (cg65 funcs only) 
I called func's I 
I local vars I 
1-----------------------------1 
I temporary I 
I storage I 
1-----------------------------1 <-- SP 

In the above diagram, SP, FRAME, and LFRAME are the names of 
zero-page fields that point to areas within the frame of the active 
function. These fields are defined in the file zpage.h, along with other 
zero page fields used by Aztec C-compiled functions, as described in 
the Memory Organization section of the Tech Info chapter. 
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The LFRAME field is used for two purposes: when a function that 
has been coptpiled with the cg65 compiler is active, this field goes by 
the nime LFRAME and points into the active function's frame. When 
a cci-compiled function is active, this field goes by the name PC and 
acts as a program counter, pointing to the next pseudo-code instruction 
that is to be executed by the Aztec interpreter routine. 

Locations in the active function's frame are specified by adding a 
value to the contents of a zero page field To abbreviate the definition 
of these locations, the following paragraphs will refer to them using an 
expression consisting of the parenthesized name of the zero-page field 
plus or minus the value. For example, the expression (FRAME)+ 11 
refers to the location within the active function's frame whose address 
is obtained by adding eleven to the contents of the zero page field 
named FRAME. 

5.1 Secondary Return Address 

The secondary return address field in a called function's frame, 
which we'll refer to here as SRA, defines the address within the calling 
function at which execution will continue when the called function 
returns. 

To be exact, if the calling function was compiled with cg65, 
execution within it will continue at the address (SRA)+ I; ie, at the 
location whose address is one greater than that contained in the called 
function's secondary return address field 

If the calling function was compiled with cci and if no parameters 
were passed to the called function, execution of pseudo-code 
instructions within the calling function by the interpreter will resume 
at address (SRA). If parameters were passed, execution will instead 
resume at address (SRA)+ 1. 

The secondary return address field for the active function is in the 
two-byte field the begins at address (FRAME)+9; ie, 9 bytes above the 
location within the active function's frame that is pointed at by the 
zero page FRAME field 

5.2 Determining the function in which a program aborted 

When a program aborts and exits to the monitor, the first thing you 
should do is determine the identity of the active function. This can be 
done as follows: 

I. Find the active function's secondary return address; 
2. In the code that precedes this address, find the address of the 

active function; 
3. From the program's linker-generated symbol table, find the 

name of the active function. 

If the address of the active function isn't in this table, because the 
function is declared to be static, you can at least determine from an 
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examination of the symbol table the module in which it was defined 

The function calling sequences are different for cg65- and cci­
compiled functions. So the following paragraphs first describe the 
code generated for a function call by the two compilers and then 
describe how to examine it to find the address of a called function. 

5.21 Calling sequence for cg65-compiled functioos 

The cg65 compiler translates a direct function call into 6502 code 
that first pushes the arguments onto the 6502 stack and then issues a 
jsr to the Aztec routine .cpystk. Following the jsr is a two-byte field 
that contains the address of the called function and then a one-byte 
field that defines the number of bytes that the called function's 
parameters and secondary return address will occupy on the pseudo 
stack. The secondary return address of the called function is set to the 
calling sequence's one-byte field 

For example, suppose the following call is made to the function 
june: 

func(a,b,c,d) 

The compiler will first generate code to push d, c. b, a (in that order) 
onto the 6502 stack. Then it will generate the following code: 

jsr .cpystk 
fdw func 
feb 10 

.cpystk will pull the arguments off the hardware stack, push them 
onto the pseudo stack, push the address of the feb 10 onto the pseudo 
stack and issue a jsr to june. The address of the feb 10 is the called 
function's secondary return address. 

cg65 translates an indirect function call ( eg, r· foo )( )) into 6502 
code that pushes the arguments on the 6502 stack, moves the address 
of the function into RO (the zero-page simulated register), and issues a 
jsr to the Aztec routine .cpystk2. Then cg65 generates a one-byte field 
that defines the number of bytes on the pseudo stack that the 
function's parameters and secondary return address will use. The 
secondary return address of the called function is set to the address of 
the one-byte field 

5.22 Calling sequence for cd-compiled functions 

The cci compiler translates a direct function call by first generating 
pseudo-code that pushes the parameters onto the pseudo stack. It then 
generates a three-byte call pseudo-instruction, consisting of an op code 
(Oxac if no parameters are specified in the call, Oxe9 if there are 
parameters) and a two byte field containing the address of the called 
function. The secondary return address of the called function is set to 
the byte that follows the interpreter's call instruction. 
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cci translates an indirect function call into pseudo code that first 
pushes the parameters onto the pseudo stack, then loads the called 
function's address into RO. it then generates a one-byte call pseudo 
instruction (Oxdd if no parameters arre specified, Oxea if they are). 
The secondary return address of the called function is set to the 
address of the byte following the call instruction. 

5.2.3 Examining the calling sequence 

To find the address of the active function from the sequence of 
instructions that called it, you should examine the bytes that precede 
the function's secondary return address: 

• If the fifth through the third preceding bytes are jsr .cpystk 
(indicating a direct function call from a cg65-compiled 
function) or if the third preceding byte is Oxdd or Oxea (a 
direct function call from a cci-compiled function), the second 
and first preceding bytes contain the address of the function. 

• If the fifth through the third preceding bytes are jsr .cpystk2 
(an indirect function call from a cg65-compiled function), or 
if the third preceding byte is Oxac or Oxe9 (an indirect 
function call from a cci-compiled function), you'll have to 
find the function address by examining the variables from 
which the function address was computed 

5.3 Determining the parameters passed to the active function 

To determine the parameters that have been passed to the active 
function. you should first determine the identity of the active 
function. This knowledge will then give you the number and types of 
the function's parameters. You can then simply examine the 
function's arguments on the pseudo stack: the first parameter begins at 
address (FRAME)+ 11 and occupies the number of bytes appropriate 
for a value of its type. The second parameter begins immediately 
above the first, and occupies the required number of bytes, and so on. 

5.4 Determining the values of the active fundioo's local variables 

The active function's local variables occupy a section of the 
function's frame on the pseudo stack. This section extends downward 
from the first byte below the location pointed at either (1) by the 
zero-page LFRAME field, if the function was compiled by cg65 or (2) 
by the zero-page FRAME field, if it was compiled by cci. 

Local variables are allocated space in a function's frame in the 
order in which they are defined, at successively decreasing locations. 
For example, consider the following function: 
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foo() 
{ 

} 

Pseudo Stack TECH INFO 

int a,b,c; 

The local variable a will occupy the first two bytes below the location 
pointed at by LFRAME (for a cg65-compiled function) or FRAME 
(for a cci-compiled function); b will occupy the next two bytes, and c 
will occupy the next two bytes. 

5.5 Determining the values of register variables for the active functim 

Register variables are supported only for cg65-compiled functions. 
There are eight two-byte pseudo registers. They are in the zero page, 
beginning at the location whose name is REG (defined in zpage.h to 
be Ox80). 

Variables are allocated to registers in the order in which their 
declarations are encountered For example, consider the following 
function: 

foo(a,b,c) 
register int b; 
{ 

} 

int d; 
register e; 
int f; 

The variable b will occupy the register at addresses REG and REG+ 1, 
and the variable d occupies the register at REG+2 and REG+3. 

5.6 Function entry and exit 

When a function is entered, the zero page fields SP, FRAME, and 
LFRAME are saved, and updated for the new function. The saved 
values are then moved into the new function's frame, in locations 
(FRAME)+2, (FRAME)+4, and (FRAME)+6. When the function is 
exited, these fields are restored 

When a function is entered, its primary return address, which is on 
the top of the hardware stack. is saved in the new function's frame, in 
location (FRAME). 

When a C function calls another function, the call is indirectly 
made by transferring control to an intermediary routine, which in turn 
calls the other function. When the called function returns, control is 
again transferred to the intermediary routine, which then returns to 
the calling function. A called function's primary return address is the 
address in the intermediary routine to which control is returned by 
issuing an rts from the called function. And the called function's 

- tech.33-



TECH INFO Pseudo Stack Aztec CG6S 

secondary return address is the address is the calling function to which 
the intermediary routine returns. On entry to a called function. its 
primary return address is at the top of the 6502 hardware stack and its 
secondary return address is at the top of the pseudo stack 

S. 7 Getting lnformatim about a calling functim 

Once you've gotten all the information you can about the active 
function, using its frame on the pseudo stack, you can get information 
about the function that called it by examining the calling function's 
frame on the pseudo stack If necessary, you can continue examining 
frames on the pseudo stack until you know the state of all the 
function's that have been called but that have not yet returned In the 
following discussion. we'll call the function that called the active 
function function 2, the function that called it function 3, and so on. 

First of all. since the active function's secondary return address, 
whose value you know, is the address of the location in function 2 (ie, 
the calling function) to which the active function will return, you can 
scan the program's symbol table and learn the identity of function 2. 

In the active function's frame, the two-byte fields at (FRAME)+4 
and (FRAME)+6 contain the values that were in the FRAME and 
LFRAME fields at the time function 2 was active. Using these values, 
you can examine function 2's frame and determine the parameters that 
were passed to it and the values of its local variables. You can also 
determine the identity of function 3 (ie, the function that called 
function 2) from the secondary return address field within function 2's 
frame, and you can locate function 3's frame using the fields in 
function 2's frame that were in the FRAME and LFRAME fields when 
function 2 was active. 
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