
OVERVIEW OF LIBRARY FUNCTIONS

- libov.l-

Library Overview Aztec C

Chapter Contents

Overview of Library Functions ... libov
I. 1/0 Overview .. 4

1.1 Pre-opened devices, command line args 4
1.2 File 1/0 ... 6

1.2.1 Sequential 1/0 ... 6
1.2.2 Random 1/0 .. 6
1.2.3 Opening Files .. 6

1.3 Device 1/0 ... 7
1.3.1 Console 1/0 ... 7
1.3.2 1/0 to Other Devices ... 7

1.4 Mixing unbuffered and standard 1/0 calls 7
2. Standard 1/0 Overview ... 9

2.1 Opening files and devices ... 9
2.2 Closing Streams ... 9
2.3 Sequential 1/0 ... 10
2.4 Random 1/0 ... 10
2.5 Buffering .. 10
2.6 Errors II
2.7 The standard 1/0 functions .. 12

3. Unbuffered 1/0 Overview ... 14
3.1 File 1/0 ... 15
3.2 Device 1/0 ... 15

3.2.1 Unbuffered 1/0 to the Console 15
3.2.2 Unbuffered 1/0 to Non-Console Devices 16

4. Console 1/0 Overview .. 17
4.1 Line-oriented input .. 17
4.2 Character-oriented input 18
4.3 Using ioctl .. 19
4.4 The sgtty fields .. 19
4.5 Examples .. 20

5. Dynamic Buffer Allocation .. 22
6. Error Processing Overview .. 23

- Iibov.2-

Aztec C Library Overview

Overview of Library Functions

This chapter presents an overview of the functions that are
provided with Aztec C. It's divided into the following sections:

I. 1/0: Introduces the ijo system provided in the Aztec C
package.

2. Standard 1/0: The i/o functions can be grouped into two
sets; this section describes one of them, the standard i/o
functions.

3. Unbuffered 1/0: Describes the other set of i/o functions,
the unbuffered

4. Console 1/0: Describes special topics relating to console
ijo.

5. Dynamic Buffer Allocation: Discusses topics related to
dynamic memory allocation.

6. Errors: Presents an overview of error processing.

The overviews present information that is system independent.
Overview information that is specific to your system is in the form of
an appendix to this chapter; it accompanies the system dependent
section of your manual.

- libov.3-

LIBRARY 1/0 Overview Aztec C

1. Overview of 1/0

There are two sets of functions for accessing files and devices: the
unbuffered i/o functions and the standard i/o functions. These
functions are identical to their UNIX equivalents, and are described in
chapters 7 and 8 of The C Programming Language.

The unbuffered i/o functions are so called because, with few
exceptions, they transfer information directly between a program and a
file or device. By contrast, the standard i/o functions maintain buffers
through which data must pass on its journey between a program and a
disk file.

The unbuffered i/o functions are used by programs which perform
their own blocking and deblocking of disk files. The standard i/o
functions are used by programs which need to access files but don't
want to be bothered with the details of blocking and deblocking the
file records.

The unbuffered and standard i/o functions each have their own
overview section (UNBUFFERED 1/0 and STANDARD 1/0). The
remainder of this section discusses features which the two sets of
functions have in common.

The basic procedure for accessing files and devices is the same for
both standard and unbuffered i/o: the device or file must first be
"opened", that is, prepared for processing; then i/o operations occur;
then the device or file is "closed".

There is a limit on the number of files and devices that can
simultaneously be open; the limit on your system is defined in this
chapter's system dependent appendix.

Each set of functions has its own functions for performing these
operations. For example, each set has its own functions for opening a
file or device. Once a file or device has been opened, it can be
accessed only by functions in the same set as the function which
performed the open, and must be closed by the appropriate function in
the same set. There are exceptions to this non-intermingling which are
described below.

There are two ways a file or device can be opened: first, the
program can explicitly open it by issuing a function call. Second, it can
be associated with one of the logical devices standard input, standard
output, or standard error, and then opened when the program starts.

1.1 Pre-opened devices and command line arguments

There are three logical devices which are automatically opened
when a program is started: standard input, standard output, and
standard error. By default, these are associated with the console. The
operator, as part of the command line which starts the program, can
specify that these logical devices are to be "redirected" to another

- libov.4 -

Aztec C 1/0 Overview LIBRARY

device or file. Standard input is redirected by entering on the
command line, after the program name, the name of the file or device,
preceded by the character '<'. Standard output is redirected by
entering the name of the file or device, preceded by'>'.

For example, suppose the executable program cpy reads standard
input and writes it to standard output. Then the following command
will read lines from the keyboard and write them to the display:

cpy

The following will read from the keyboard and write it to the file
test file:

cpy > testfile

This will copy the file exmplfil to the console:

cpy <exmplfil

And this will copy exmplfil to testfile:

cpy <exmplfil >testfile

Aztec C will pass command line arguments to the user's program via
the user's function main(argc, argv). argc is an integer containing the
number of arguments plus one; argv is a pointer to a an array of
character pointers, each of which, except the first, points to a
command line argument. On some systems, the first array element
points to the command name; on others, it is a null pointer.
Information on your system's treatment of this pointer is presented in
this chapter's system dependent appendix.

For example, if the following command is entered:

prog argl arg2 arg3

the program prog will be activated and execution begins at the user's
function main. The first parameter to main is the integer 4. The second
parameter is a pointer to an array of four character pointers; on some
systems the first array element will point to the string "prog" and on
others it will be a null pointer. The second, third, and fourth array
elements will be pointers to the strings "argl", "arg2", and "arg3"
respectively.

The command line can contain both arguments to be passed to the
user's program and i/o redirection specifications. The i/o redirection
strings won't be passed to the user's program, and can appear anywhere
on the command line after the command name. For example, the
standard output of the "prog" program can be redirected to the file
outfile by any of the following commands; in each case the argc and
argv parameters to the main function of 'prog' are the same as if the
redirection specifier wasn't present

- libov.S-

LIBRARY 1/0 Overview

prog argl arg2 arg3 >outfile
prog >outfile argl arg2 arg3
prog argl >outfile arg2 arg3

1.2 File 1/0

Aztec C

A program can access files both sequentially and randomly, as
discussed in the following paragraphs.

1.21 Sequential 1/0

For sequential access, a program simply issues any of the various
read or write calls. The transfer will begin at the file's "current
position", and will leave the current position set to the byte following
the last byte transferred A file can be opened for read or write access;
in this case, its current position is initially the first byte in the file. A
file can also be opened for append access; in this case its current
position is initially the end of the file.

On systems which don't keep track of the last character written to a
file, it isn't always possible to correctly position a file to which data is
to be appended If this is a problem on your system, it's discussed in
the system dependent appendix to this chapter, which accompanies the
system dependent section of your manual.

1.22 Random 1/0

Two functions are provided which allow a program to set the
current position of an open file: fseek, for a file opened for standard
ijo; and !seek, for a file opened for unbuffered i/o.

A program accesses a file randomly by first modifying the file's
current position using one of the seek functions. Then the program
issues any of the various read and write calls, which sequentially access
the file.

A file can be positioned relative to its beginning, current position,
or end Positioning relative to the beginning and current position is
always correctly done. For systems which don't keep track of the last
character written to a file, positioning relative to the end of a file can't
always be correctly done. For information on this, see this chapter's
system dependent appendix.

1.23 Opening files

Opening files is somewhat system dependent the parameters to the
open functions are the same on the Aztec C packages for all systems,
but some system dependencies exist, to conform with the system
conventions. For example, the syntax of file names and the areas
searched for files differ from system to system.

For information on the opening of files on your system, see this
chapter's system dependent appendix.

- libov.6-

Aztec C 1/0 Overview LIBRARY

1.3 Device 1/0

Aztec C allows programs to access devices as well as files. Each
system has its own names for devices: for the names of devices on
your system, see this chapter's system dependent appendix.

1.3.1 Console 1/0

Console I/0 can be performed in a variety of ways. There's a
default mode, and other modes can be selected by calling the function
ioctl. We'll briefly describe console I/0 in this section; for more
details, see the Console I 10 section of this chapter and the system
dependent appendix to this chapter.

When the console is in default mode, console input is buffered and
is read from the keyboard a line at a time. Typed characters are echoed
to the screen and the operator can use the standard operating system
line editing facilities. A program doesn't have to read an entire line at
a time (although the system software does this when reading keyboard
input into it's internal buffer), but at most one line will be returned to
the program for a single read request

The other modes of console i/o allow a program to get characters
from the keyboard as they are typed, with or without their being
echoed to the display; to disable normal system line editing facilities;
and to terminate a read request if a key isn't depressed within a certain
interval.

Output to the console is always unbuffered: characters go directly
from a program to the display. The only choice concerns translation of
the newline character; by default, this is translated into a carriage
return, line feed sequence.

Optionally, this translation can be disabled

1.3.2 1/0 to Other Devices

On most systems, few options are available when writing to devices
other than the console. For a discussion of such options, if any, that
are available on your system, see this chapter's system dependent
appendix.

1.4 Mixing unbuffered and standard i/o calls

As mentioned above, a program generally accesses a file or device
using functions from one set of functions or the other, but not both.

However, there are functions which facilitate this dual access: if a
file or device is opened for standard i/o, the function fileno returns a
file descriptor which can be used for unbuffered access to the file or
device. If a file or device is open for unbuffered i/o, the function
fdopen will prepare it for standard i/o as well.

- libov.7-

LIBRARY 1/0 Overview Aztec C

Care is warranted when accessing devices and files with both
standard and unbuffered i/o functions.

-libov.8-

Aztec C Standard 1/0 Overview LIBRARY

2. Overview of Standard 1/0

The standard i/o functions are used by programs to access files and
devices. They are compatible with their UNIX counterparts, with few
exceptions, and are also described in chapter 8 of The C Programming
Language. The exceptions concern appending data to files and
positioning files relative to their end, and are discussed below.

These functions provide programs with convenient and efficient
access to files and devices. When accessing files, the functions buffer
the file data; that is, handle the blocking and deblocking of file data
Thus the user's program can concentrate on its own concerns.

Buffering of data to devices when using the standard i/o functions
is discussed below.

For programs which perform their own file buffering, another set
of functions are provided These are described in the section
UNBUFFERED I/0.

2.1 Opening files and devices

Before a program can access a file or device, it must be "opened",
and when processing on it is done it must be "closed".

An open device or file is called a "stream" and has associated with it
a pointer, called a "file pointer", to a structure of type FILE. This
identifies the file or device when standard i/o functions are called to
access it

There are two ways for a file or device to be opened for standard
i/o: first, the program can explicitly open it, by calling one of the
functions /open, /reopen, or fdopen. In this case, the open function
returns the file pointer associated with the file or device. fopen just
opens the file or device. /reopen reopens an open stream to another
file or device; it's mainly used to change the file or device associated
with one of the logical devices standard output, standard input, or
standard error. fdopen opens for standard i/o a file or device already
opened for unbuffered ij o.

Alternatively, the file or device can be automatically opened as one
of the logical devices standard input, standard output, or standard
error. In this case, the file pointer is stdin, stdout, or stderr,
respectively. These symbols are defined in the header file stdio.h. See
the section entitled 1/0 for more information on logical devices.

2.2 Oosing streams

A file or device opened for standard i/o can be closed in two ways:
first, the program can explicitly close it by calling the function /close.

Alternatively, when the program terminates, either by falling off
the end of the function main, or by calling the function exit, the
system will automatically close all open streams.

- Iibov .9-

LIBRARY Standard 1/0 Overview Aztec C

Letting the system automatically close open streams is error-prone:
data written to files using the standard i/o functions is buffered in
memory, and a buffer isn't written to the file until it's full or the file
is closed Most likP.ly, when a program finishes writing to a file, the
file's buffer will be partially full, with this information not having
been written to the file. If a program calls /close, this function will
write the partially filled buffer to the file and return an error code if
this couldn't be done. If the program lets the system automatically
close the file, the program won't know if an error occurred on this last
write operation.

23 Sequential 1/0

Files can be accessed sequentially and randomly. For sequential
access, simply issue repeated read or write calls; each call transfers data
beginning at the "current position" of the file, and updates the current
position to the byte following the last byte transferred When a file is
opened, its current position is set to zero, if opened for read or write
access, and to its end if opened for append

On systems which don't keep track of the last character written to a
file, such as CP/M and Apple 11 DOS, not all files can be correctly
positioned for appending data. See the section entitled I/0 for details.

24 Random 1/0

The function fseek allows a file to be accessed randomly, by
changing its current position. Positioning can be relative to the
beginning, current position, or end of .the file.

For systems which don't keep track of the last character written to a
file, such as CP/M and Apple I I DOS, positioning relative to the end
of a file cannot always be correctly done. See the I/0 overview section
for details.

25 Buffering

When the standard i/o functions are used to access a file, the i/o is
buffered Either a user-specified or dynamically- allocated buffer can
be used

The user's program specifies a buffer to be used for a file by calling
the function setbuf after the file has been opened but before the first
i/o request to it has been made.

If, when the first i/o request is made to a file, the user hasn't
specified the buffer to be used for the file, the system will
automatically allocate, by calling malloc, a buffer for it. When the file
is closed it's buffer will be freed, by calling free.

Dynamically allocated buffers are obtained from the one region of
memory (the heap), whether requested by the standard i/o functions
or by the user's program. For more information, see the overview

- libov.lO-

Aztec C Standard 1/0 Overview LIBRARY

section Dynamic Buffer Allocation.

The size of an i/o buffer differs from system to system. See this
chapter's system-dependent appendix for the size of this buffer on
your system.

A program which both accesses files using standard i/o functions
and has overlays has to take special steps to insure that an overlay
won't be loaded over a buffer dynamically allocated for file i/o. For
more information, see the section on overlay support irt the Technical
Information chapter.

By default, output to the console using standard i/o functions is
unbuffered; all other device i/o using the standard i/o functions is
buffered Console input buffering can be disabled using the ioctl
function; see the overview section Console 1/0 for details.

2.6 Errors

There are three fields which may be set when an exceptional
condition occurs during stream i/o. Two of the fields 'are unique to
each stream (that is, each stream has its own pair). The other is a
global integer.

One of the fields associated with a stream is set if end of file is
detected on input from the stream; the other is set if an error occurs
during i/o to the stream. Once set for a stream, these flags remain set
until the stream is closed or the program calls the clearerr function for
the stream. The only exception to the lac;t statement is that when
called, /seek will reset the end of file flag for a stream. A program can
check the status of the eof and error flags for a stream by calling the
functions jeof and ferror, respectively.

The other field which may be set is the global integer errno. By
convention, a system function which returns an error status as its value
can also set a code in errno which more fully defines the error. The
overview section Errors defines the values which may be set in errno.

If an error occurs when a stream is being accessed, a standard i/o
function returns EOF (-l) as its value, after setting a code in errno and
setting the stream's error flag.

If end of file is reached on an input stream, a standard ijo function
returns EOF after setting the stream's eof flag.

There are two techniques a program can use for detecting errors
during stream ijo. First, the program can check the result of each i/o
call. Second, the program can issue i/o calls and only periodically
check for errors (for example, check only after all i/o is completed).

On input, a' program will generally check the result of each
operation.

-libov.ll-

LIBRARY Standard 1/0 Overview Aztec C

On output to a file, a program can use either error checking
technique; however, periodic checking by calling jerror is more
efficient. When characters are written to a file using the standard i/o
functions they are placed in a buffer, which is not written to disk until
it is full. If the buffer isn't full, the function will return good status. It
will only return bad status if the buffer was full and an error occurred
while writing it to disk. Since the buffer size is 1024 bytes, most write
calls will return good status, and hence periodic checking for errors is
sufficient and most efficient.

Once a file opened for standard i/o is closed, jerror can't be used to
determine if an error has occurred while writing to it. Hence !error
should be called after all writing to the file is completed but before the
file is closed The file should be explicitly closed by !close, and its
return value checked, rather than letting the system automatically close
it, to know positively whether an error has occurred while writing to
the file. The reason for this is that when the writing to the file is
completed, it's standard i/o buffer will probably be partly full. This
buffer will be written to the file when the file is closed, and jclose will
return an error status if this final write operation fails.

2 7 The standard i/o functions

The standard ijo functions can be grouped into two sets: those that
can access only the logical devices standard input, standard output, and
standard error; and all the rest

Here are the standard i/o functions that can only access stdin,
stdout, and stderr. These are all ASCII functions; that is, they expect to
deal with text characters only.

getchar
gets
printf
puterr
putchar
puts
scanf

Get an ASCII character from stdin
Get a line of ASCII characters from stdin
Format data and send it to stdout
Send a character to stderr
Send a character to stdout
Send a character string to stdout
Get a line from stdin and convert it

Here are the rest of the standard i/o functions:

-libov.12-

Aztec C

agetc
aputc
fopen
fdopen

freopen
fclose
feof
ferror
file no
fflush
fgets
fprintf
fputs
fread
fscanf
fseek
ftell
fwrite
getc
getw
putc
putw
setbuf
ungetc

Standard 1/0 Overview

Get an ASCII character
Send an ASCII character
Open a file or device

LIBRARY

Open as a stream a file or device already open
for unbuffered i/o
Open an open stream to another file or device
Close an open stream
Check for end of file on a stream
Check for error on a stream
Get file descriptor associated with stream
Write stream's buffer
Get a line of ASCII characters
Format data and write it to a stream
Send a string of ASCII characters to a stream
Read binary data
Get data and convert it
Set current position within a file
Get current position
Write binary data
Get a binary character
Get two binary characters
Send a binary character
Send two binary characters
Specify buffer for stream
Push character back into stream

-libov.13-

LIBRARY Unbuffered 1/0 Overview Aztec C

3. Overview of Unbuffered 1/0

The unbuffered I/0 functions are used to access files and devices.
They are compatible with their UNIX counterparts and are also
described in chapter 8 of The C Programming Language.

As their name implies, a program using these functions, with two
exceptions, communicates directly with files and devices; data doesn't
pass through system buffers. Some unbuffered I/0, however, is
buffered: when data is transferred to or from a file in blocks smaller
than a certain value, it is buffered temporarily. This value differs from
system to system, but is always less than or equal to 512 bytes. Also,
console input can be buffered, and is, unless specific actions are taken
by the user's program.

Programs which use the unbuffered i/o functions to access files
generally handle the blocking and deblocking of file data themselves.
Programs requiring file access but unwilling to perform the blocking
and deblocking can use the standard i/o functions; see the overview
section Standard I/0 for more information.

Here are the unbuffered i/o functions:

open
creat
close
read
write
lseek
rename
unlink
ioctl
isatty

Prepares a file or device for unbuffered i/o
Creates a file and opens it
Concludes the i/o on an open file or device
Read data from an open file or device
Write data to an open file or device
Change the current position of an open file
Renames a file
Deletes a file
Change console i/o mode
Is an open file or device the console?

Before a program can access a file or device, it must be "opened", and
when processing on it is done, it must be "closed".

An open file or device has an integer known as a "file descriptor"
associated with it; this identifies the file or device when it's accessed

There are two ways for a file or device to be opened for unbuffered
i/o. First, it can explicitly open it, by calling the function open. In this
case, open returns the file descriptor to be used when accessing the file
or device.

Alternatively, the file or device can be automatically opened as one
of the logical devices standard input, standard output, or standard
error. In this case, the file descriptor is the integer value 0, 1, or 2,
respectively. See the section entitled I/0 for more information on this.

An open file or device is closed by calling the function close. When
a program ends, any devices or files still opened for unbuffered i/o
will be closed

- libov.14-

Aztec C Unbuffered 1/0 Overview LIBRARY

If an error occurs during an unbuffered i/o operation, the function
returns -1 as its value and sets a code in the global integer errno. For
more information on error handling, see the section ERRORS.

The remainder of this section discusses unbuffered i/o to files and
devices.

3.1 File 1/0

Programs call the functions read and write to access a file; the
transfer begins at the "current position" of the file and proceeds until
the number of characters specified by the program have been
transferred

The current position of a file can be manipulated in various ways
by a program, allowing both sequential and random acccess to the file.
For sequential access, a program simply issues consecutive i/o
requests. After each operation, the current position of the file is set to
the character following the last one accessed

The function [seek provides random access to a file by setting the
current position to a specified character location

lseek allows the current position of a file to be set relative to the
end of a file. For systems which don't keep track of the last character
written to a file, such positioning cannot always be correctly done. For
more information, see the section entitled 1/0.

open provides a mode, 0 APPEND, which causes the file being
opened to be positioned at its end This mode is supported on UNIX
Systems 3 and 5, but not UNIX version 7. As with !seek, the
positioning may not be correct for systems which don't keep track of
the last character written to a file.

3.2 Device 1/0

3.21 Unbuffered 1/0 to the Console

There are several options available when accessing the console,
which are discussed in detail in the Console 1/0 sections of this
chapter and of the system-dependent appendix to this chapter. Here
we just want to briefly discuss the line- or character-modes of console
I/0 as they relate to the unbuffered i/o functions.

Console input can be either line- or character-oriented With line­
oriented input, characters are read from the console into an internal
buffet a line at a time, and returned to the program from this buffer.
Line buffering of console input is available even when using the so­
called "unbuffered" i/o functions.

With character-oriented input, characters are read and returned to
the program when they are typed: no buffering of console input
occurs.

-libov.15-

LIBRARY Unbuffered 1/0 Overview Aztec C

3.22 Unbuffered 1/0 to Non-Console Devices

Unbuffered 1/0 to devices other than the console is truly
unbuffered

- libov.16 -

Aztec C Console 1/0 Overview LIBRARY

4. Overview of Console 1/0

A program has control over several options relating to console i/o.
The primary option allows console input to be either line- or
character-oriented, as described below.

On most systems, a program can selectively enable and disable the
echoing of typed characters to the screen; this is called the ECHO
option A program can also enable and disable the conversion of
carriage return to newline on input and of newline to carriage return­
linefeed on output; this is called the CRMOD option.

On some systems, additional options are available. If your system
supports additional options, they are discussed in the system dependent
appendix to this chapter.

All the console i/o options have default settings, which allow a
program to easily access the console without having to set the options
itself. In the default mode, console ijo is line-oriented, with ECHO
and CRMOD enabled

A program can easily change the console i/o options, by calling the
function ioctl.

Console i/o behaves the same on all systems when the console
options have their default settings. However, the behavior of console
i/o differs from system to system when the options are changed from
their default values. Thus, a program requiring machine independence
should either use the console in its default mode or be careful how it
sets the console options. In the paragraphs below, we will try to point
out system dependencies.

4.1 Line-oriented input

With line-oriented input, a program issuing a read request to the
console will wait until an entire line has been typed On some systems
a non-UNIX option (NODELA Y) is available that will prevent this
waiting. If this option is available on your system, it's discussed in the
system-dependent appendix to this chapter.

The program need not read an entire line at once; the line will be
internally buffered, and characters returned to the program from the
buffer, as requested When the program issues a read request to the
console and the buffer is empty, the program will wait until an entire
new line has been typed and stored in the internal buffer (again, on
some systems programs can disable this wait by setting the non-UNIX
NODELA Y option).

A single unbuffered read operation can return at most one line.

On most systems , selecting line-oriented console input forces the
ECHO option to be enabled On such systems the program still has
control over the CRMOD option. To find out if, on your system,

-libov.17-

LIBRARY Console 1/0 Overview Aztec C

line-oriented mode always has ECHO enabled, see the system­
dependent appendix to this chapter.

4.2 Character-oriented input

The basic idea of character-oriented console input is that a program
can read characters from the console without having to wait for an
entire line to be entered

The behavior of character-oriented console input differs from
system to system, so programs requiring both machine independence
and character-oriented console input have to be careful in their use of
the console. However, it is possible to write such programs, although
they may not be able to take full advantage of the console i/o features
available for a particular system.

There are two varieties of character-oriented console input, named
CBREAK and RAW. Their primary difference is that with the console
in CBREAK mode, a program still has control over the other console
options, whereas with the console in RAW mode it doesn't. In RAW
mode, all other console options are reset ECHO and CRMOD are
disabled

Thus, to some extent RAW mode is simply an abbreviation for
'CBREAK on, all other options ofr. However, there are some
differences on some systems, as noted below and in this chapter's
system-dependent appendix.

The system-dependent appendix to this chapter, which accompanies
your manual, presents information about character-oriented console
that is specific to your system.

4.21 Writing system-independent programs

To write system-independent programs that access the console in
character-oriented input mode, the console should be set in RAW
mode, and the program should read only a single character at a time
from the console. All the non-UNIX options that are supported by
some systems should be reset

The standard i/o functions all read just one character at a time
from the console, even when the calling program requests several
characters. Thus, programs requiring system independence and
character-oriented input can read the console using the standard i/o
functions.

Some systems require a program that wants to set console option to
first call ioctl to fetch the current console options, then modify them as
desired, and finally call ioctl to reset the new console options. The
systems that don't require this don't care if a program first fetches the
console options and then modifies them. Thus, a program requiring
system-independence and console i/o options other than the default
should fetch the current console options before modifying them.

- libov.18-

Aztec C Console 1/0 Overview LIBRARY

4.3 Using ioctl

A program selects console 1/0 modes using the function ioctl. This
has the form:

#include <sgtty.h>

ioctl(fd, code, arg)
struct sgttyb *arg;

The header file sgtty.h defines symbolic values for the code
parameter (which tells ioctl what to do) and the structure sgttyb.

The parameter fd is a file descriptor associated with the console. On
UNIX, this parameter defines the file descriptor associated with the
device to which the ioctl call applies. Here, ioctl always applies to the
console.

The parameter code defines the action to be performed by ioctl. It
can have these values:

TIOCGETP

TIOCSETP

TIOCSETN

Fetch the console parameters and store them in
the structure pointed at by arg.
Set the console parameters according to the
structure pointed at by arg.
Equivalent to TIOCSETP.

The argument arg points to a structure named sgttyb that contains
the following fields:

int sg flags;
char sg erase;
char sg=kill;

The order of these fields is system~dependent.

The sg_flags field is supported by all systems, while the other
fields are not supported by some systems. If these fields are supported
on your system, the system-dependent appendix to this chapter that
accompanies your manual says so, and describes them.

To set console options, a program should fetch the current state of
the sgtty fields, using ioctl's TIOCGETP option. Then it should
modify the fields to the appropriate values and call ioctl again, using
ioctl's TIOCSETP option.

4.4 The sgtty fields

4.4.1 The sg_fl~ field

sg_flags contains the following UNIX-compatible flags:

RAW Set RAW mode (turns off other options). By
default, RAW is disabled

CBREAK Return each character as soon as typed By
default, CBREAK is disabled

-libov.19-

Console 1/0 Overview Aztec C LIBRARY

ECHO Echo input characters to the display. By default,
ECHO is enabled

CRMOD Map CR to LF on input; convert LF to CR-LF
on output By default, CRMOD is enabled

On some systems, other flags are contained in sg_j/ags. If your
system supports other flags, they're described in the system-dependent
appendix to this chapter that accompanies your manual.

More than one flag can be specified in a single call to ioctl; the
values are simply 'or'ed together. If the RAW option is selected, none
of the other options have any effect

When the console i/o options are set and RAW and CBREAK are
reset, the console is set in line-oriented input mode.

4.5 Examples

4.5.1 Console input using default mode

The following program copies characters from stdin to stdout The
console is in default mode, and assuming these streams haven't been
redirected by the operator, the program will read from the keyboard
and write to the display. In this mode, the operator can use the
operating system's line editing facilities, such as backspace, and
characters entered on the keyboard will be echoed to the display. The
characters entered won't be returned to the program until the operator
depresses carriage return.

#include <stdio.h>

main()
{

int c;
while ((c = getchar()) != EOF)

putchar(c);
}

4.5.2 Console input - RAW mode

In this example, a program opens the console for standard i/o, sets
the console in RAW mode, and goes into a loop, waiting for characters
to be read from the console and then processing them. The characters
typed by the operator aren't displayed unless the program itself
displays them. The input request won't terminate until a character is
received This example assumes that the console is named 'con:'; on
systems for which this is not the case, just substitute the appropriate
name.

- libov.20-

Aztec C Console 1/0 Oveniew

#include <stdio.h>
#include <sgtty.h>
main()
{

}

int c;
FILE *fp;
struct sgttyb stty;

if ((fp = fopen("con:", "r") == NULL){
printf("can't open the console\n");
exit();

}

ioctl(file no(fp), TIOCGETP, &stty);

stty.sg flags 1= RAW;
ioctl(flleno(fp), TIOCSETP, &stty);
for(;;){

c = getc(fp);

}

4.5.3 .Console input - ronsole in CBREAK + ECHO mode

LIBRARY

This example modifies the previous program so that characters read
from the console are automatically echoed to the display. The program
accesses the console via the standard input device. It uses the function
isatty to verify that stdin is associated with the console; if it isn't, the
program reopens stdin to the console using the function jreopen.
Again, the console is assumed to be named con:.

#include <stdio.h>
#include <sgtty.h>
main()
{

}

int c;
struct sgttyb stty;

if (!isatty(stdin))
freopen("con:", "r", stdin);

ioctl(O, TIOCGETP, &stty);
stty.sg flags I= CBREAK I ECHO;
ioctl(o:-nocsETP, &stty);
for(;;){

c = getchar();

}

-libov.21 -

LIBRARY Dynamic Buffer Alloc Aztec C

5. Overview of Dynamic Buffer Allocation

Several functions are provided for the dynamic allocation and
deallocation of buffers from a section of memory called the 'heap'.
They are:

malloc Allocates a buffer
calloc Allocates a buffer and initializes it to zeroes
realloc Allocates more space to a previously allocated buffer
free Releases an allocated buffer for reuse

These standard UNIX functions are described in the System
Independent Functions section of this chapter.

In addition, on some systems the UNIX-compatible functions sbrk
and brk are provided that provide a more elementary means to allocate
heap space. The malloc-type functions call sbrk to get heap space,
which they then manage.

On some systems, non-UNIX memory allocation functions are also
supported If such functions are supported on your system, they are
described in the system-dependent appendix to this chapter that
accompanies your manual.

Dynamic allocation of standard ijo buffers

Buffers used for standard i/o are dynamically allocated from the
heap unless specific actions are taken by the user's program. Standard
if o calls to dynamically allocate and deallocate buffers can be
interspersed with those of the user's program.

Programs which perform standard ijo and which must have
absolute control of the heap can explicitly define the buffers to be used
by a standard i/o stream.

Where to go from here

For descriptions of the sbrk and brk functions and, when applicable,
non-UNIX memory allocation functions see the System Dependent
Functions chapter.

For a discussion of ijo buffer allocation, see the Standard 1/0
section of the Library Functions Overviews chapter.

For more information on the heap, see the Program Organization
section of the Technical Information chapter.

-libov.22-

Aztec C Errors Overview LIBRARY

6. Overview of Error Processing

This section discusses error processing which relates to the global
integer errno. This variable is modified by the standard i/o, unbuffered
i/o, and scientific (eg, sin, sqrt) functions as part of their error
processing.

The handling of floating point exceptions (overflow, underflow, and
division by zero) is discussed in the Tech Info chapter.

When a standard i/o, unbuffered i/o, or scientific function detects
an error, it sets a code in errno which describes the error. If no error
occurs, the scientific functions don't modify errno. If no error occurs,
the i/o functions may or may not modify errno.

Also, when an error occurs,

* A standard i/o function returns -1 and sets an error flag for
the stream on which the error occurred;

* An unbuffered i/o function returns -1;

* A scientific function returns an arbitrary value.

When performing scientific calculations, a program can check errno
for errors as each function is called Alternatively, since errno is
modified only when an error occurs, errno can be checked only after a
sequence of operations; if it's non-zero, then an error has occurred at
some point in the sequence. This latter technique can only be used
when no i/o operations occur during the sequence of scientific
function calls.

Since errno may be modified by an i/o function even if an error
didn't occur, a program can't perform a sequence of i/o operations and
then check errno afterwards to detect an error. Programs performing
unbuffered i/o must check the result of each i/o call for an error.

Programs performing standard i/o operations cannot, following a
sequence of standard ij o calls, check errno to see if an error occurred
However, associated with each open stream is an error flag. This flag is
set when an error occurs on the stream and remains set until the
stream is closed or the flag is explicitly reset. Thus a program can
perform a sequence of standard i/o operations on a stream and then
check the stream's error flag. For more details, see the standard i/o
overview section.

The following table lists the system-independent values which may
be placed in errno. These symbolic values are defined in the file
errno.h. Other, system-dependent, values may also be set in errno
following an i/o operation; these are error codes returned by the
operating system. System dependent error codes are described in the
operating system manual for a particular system.

-libov.23-

LIBRARY Errors Overview Aztec C

The system-independent error codes and their meanings are:

error code
ENOENT
E2BIG
EBADF

ENOMEM
EEXIST
EINVAL
ENFILE
EM FILE
ENOTTY
EACCES
ERANGE
EDOM

meaning
File does not exist
Not used
Bad file descriptor - file is not open
or improper operation requested
Insufficient memory for requested operation
File already exists on creat request
Invalid argument
Exceeded maximum number of open files
Exceeded maximum number of file descriptors
Ioctl attempted on non-console
Invalid access request
Math function value can't be computed
Invalid argument to math function

- libov.24-

SYSTEM-INDEPENDENT FUNCTIONS

- lib.l -

FUNCTIONS Aztec C

Chapter Contents

System Independent Functions .. lib
Index ... 5
The functions .. 8

- lib.2-

Aztec C FUNCTIONS

System Independent Functions

This chapter describes in detail the functions which are UNIX­
compatible and which are common to all Aztec C packages.

The chapter is divided into sections, each of which describes a group
of related functions. Each section has a name, and the sections are
ordered alphabetically by name. Following this introduction is a cross
reference which lists each function and the name of the section in
which it is described

A section is organized into the following subsections:

TITLE
Lists the name of the section, a phrase which is intended to
catagorize the functions described in the section, and one or
more letters in parentheses which specify the libraries
containing the section's functions.

The letters which may appear in parentheses and their
corresponding libraries are:

c
M

c.lib
m.lib

On some systems, the actual library name may be a variant on
the name given above. For example, on TRSDOS, the libraries
are named c/lib and m/lib.

With Apprentice C, the functions are all in the run-time system,
and not libraries.

SYNOPSIS
Indicates the types of arguments that the functions described in
the section require, and the values they return. For example, the
function atof converts character strings into double precision
numbers. It is listed in the synopsis as

double atof(s)
char *s;

This means that atof() returns a value of type double and
requires as an argument a pointer to a character string. Since
atof returns a non-integer value, prior to use of the function it
must be declared:

double atof();

The notation

- lib.3-

FUNCTIONS Aztec C

#include "header.h"

at the beginning of a synopsis indicates that such a statement
should appear at the beginning of any program calling one of
the functions described in the section.

On Radio Shack systems, a header file can use either a period or
a slash to separate the filename from the extent. That is, the
include statement can be as listed above, or

#include "header/h"

DESCRIPTION
Describes the section's functions.

SEE AlSO
Lists relevant sections. A letter in parentheses may follow a
section name. This specifies where the section is located: no
letter means that the section is in the current chapter; '0' means
that it's in the Functions Overview chapter; 'S' means that it's in
the System Dependent Functions chapter.

DIAGNOSTICS
Describes the error codes that the section's functions may
return. The section ERRORS in the Functions Overview chapter
presents an overview of error processing.

EXAMPLES
Gives examples on use of the section's functions.

- lib.4-

Index to System Independent Functions

function page description

acos SIN .. compute arccosine
agetc GETC get ASCII char from a stream
aputc Pure put ASCII char to a stream
asin SIN .. compute arcsine
atan SIN .. compute arctangent
atan2 SIN another arctangent function
atof A TOF convert char string to a double
atoi A TOF convert char string to an int
atol ATOF convert char string to a long
calloc MALLOC ... allocate a buffer
ceil FLOOR get smallest integer not less than x
clearerr FERROR clear error flags on a stream
close CLOSE close of unbuffered file/device
cos SIN ... compute cosine
cosh SINH compute hyperbolic cosine
cotan SIN ... compute cotangent
creat CREA T create a file & open for unbuffered i/o
exp EXP .. compute exponential
fabs FLOOR .. compute absolute value
fclose FCLOSE ... close i/o stream
fdopen FOPEN open file descriptor as an i/o stream
feof FERROR check for eof on an i/o stream
ferror FERROR check for error on an i/o stream
fflush FCLOSE .. flush an i/o stream
fgets GETS get a line from an i/o stream
file no FERROR get file descriptor for i/o stream
floor FLOOR get largest int not greater than x
fopen FOPEN ... open i/o stream
format PRINTF formatting utility for print!
fprintf PRINTF format string & send to i/o stream
fputs PUIS put char string to i/o stream
fread FREAD read binary data from i/o stream
free MALLOC ... release buffer
freopen FOPEN .. reopen i/o stream
frexp FREXP get components of a double
fscanf SCANF input string from i/o stream & convert
fseek FSEEK .. position i/o stream
ftell FSEEK determine position in i/o stream
ftoa ATOF convert float/ double to char string

- lib.S-

fwrite FREAD write binary data to i/o stream
getc GETC get binary char from i/o stream
getchar GETC get ASCII char from stdin
gets GETS get ASCII line from stdin
getw GETW get ASCII word from stdin
index STRING ... find char in string
ioctl IOCTL .. set mode of device
isalpha, etc. CTYPE char classification functions
isatty IOCTL ... is this a console?
ldexp FREXP .. build double
log EXP .. compute natural logarithm
loglO EXP ... compute base-10 log
longjmp SETJMP ... non-local goto
!seek LSEEK position unbuffered i/o file
malloc MALLOC .. allocate buffer
movmem MOVMEM copy a block of memory
modf FREXP get components of double
open OPEN open file/device for unbuffered i/o
pow EXP ... compute x**y
printf PRINTF format data and print on stdout
putc PUTC put binary char to i/o stream
putchar PUTC ... put ASCII char to stdout
puterr PUTC ... put ASCII char to stderr
puts PUTS put ASCII string to stdout
putw PUTC put ASCII word to stdout
qsort QSORT .. Quick sort
ran RAN ... compute random number
read READ read unbuffered file/device
realloc MALLOC .. reallocate buffer
rename RENAME ... rename file
rindex STRING ... find char in string
scanf SCANF input string from stdin & convert
setbuf SETBUF set buffer for i/o stream
setjmp SETJMP .. longjmp partner
setmem MOVMEM set memory to specified byte
sin SIN ... compute sine
sinh SINH .. compute hyperbolic sine
sprintf PRINTF format string into buffer
sqrt EXP ... compute square root
sscanf SCANF convert string from buffer
strcat STRING concatenate two strings
strcmp STRING .. compare two strings
strcpy STRING ... copy char string
strlen STRING get length of char string
strncat STRING .. concatenate strings
strncmp STRING .. compare strings
strncpy STRING .. copy string
swapmem MOVMEM swap two blocks of memory

- lib.6-

tan SIN ... compute tangent
tanh SINH compute hyperbolic tangent
tolower TOUPPER convert upper case char to lower
toupper TOUPPER convert lower case char to upper
ungetc UNGETC return char to i/o stream
unlink UNLINK ... delete file
write WRITE unbuffered write of binary data

-lib.7-

ATOF(C,M) ATOF

NAME
atof, atoi, atol - convert ASCII to numbers
ftoa - convert floating point to ASCII

SYNOPSIS
double atof(cp)
char *cp;

atoi(cp)
char *cp;

long atol(cp)
char *cp;

ftoa(val, buf, precision, type)
double val;
char *buf;
int precision, type;

DESCRIPTION
atof, atoi, and atol convert a string of text characters pointed at
by the argument cp to double, integer, and long representations,
respectively.

atof recognizes a string containing leading blanks and tabs,
which it skips, then an optional sign, then a string of digits
optionally containing a decimal point, then an optional 'e' or 'E'
followed by an optionally signed integer.

atoi and atol recognize a string containing leading blanks and
tabs, which are ignored, then an optional sign, then a string of
digits.

ftoa converts a double precision floating point number to ASCII.
val is the number to be converted and buf points to the buffer
where the ASCII string will be placed precision specifies the
number of digits to the right of the decimal point type specifies
the format 0 for "E" format, 1 for "F' format, 2 for "G" format

atof and ftoa are in the library m.lib; the other functions are in
c. lib.

- lib.8 -

CLOSE (C) CLOSE

NAME
close - close a device or file

SYNOPSIS
close(fd)
int fd;

DESCRIPTION
close closes a device or disk file which is opened for unbuffered
i/o.

The parameter fd is the file descriptor associated with the file
or device. If the device or file was explicitly opened by the
program by calling open or creal, fd is the file descriptor
returned by open or creat.

close returns 0 as its value if successful.

SEE ALSO
Unbuffered I/0 (0), Errors (0)

DIAGNOSTICS
If close fails, it returns -1 and sets an error code in the global
integer errno.

- lib.9-

CREAT (C)

NAME
creat- create a new file

SYNOPSIS
creat(name, pmode)
char •name;
int pmode;

DESCRIPTION

CREAT

creal creates a file and opens it for unbuffered, write-only
access. If the file already exists, it is truncated so that nothing is
in it (this is done by erasing and then creating the file).

creal returns as its value an integer called a "file descriptor".
Whenever a call is made to one of the unbuffered i/o functions
to access the file, its file descriptor must be included in the
function's parameters.

name is a pointer to a character string which is the name of the
device or file to be opened See the I/0 overview section for
details.

For most systems, pmode is optional: if specified, it's ignored It
should be included, however, for programs for which UNIX­
compatibility is required, since the UNIX creat function
requires it. In this case, pmode should have the octal value 0666.

For some systems, pmode is required and has a special meaning.
If it is required for your system, the System Dependent
Functions chapter will contain a description of the creal
function, which will define the meaning.

SEE AlSO
Unbuffered I/0 (0), Errors (0)

DIAGNOSTICS
If creal fails, it returns -I as its value and sets a code in the
global integer errno.

- lib.lO -

CTYPE (C) CTYPE

NAME
isalpha, isupper, islower, isdigit, isalnum, isspace,
ispunct, isprint, iscntrl, isascii
- character classification functions

SYNOPSIS
#include "ctype.h"

isalpha(c)

DFSCRIPTION
These macros classify ASCII-coded integer values by table
lookup, returning nonzero if the integer is in the catagory, zero
otherwise. isascii is defined for all integer values. The others are
defined only when isascii is true and on the single non-ASCII
value EOF (-1).

isalpha
isupper
is/ower
isdigit
isalnum
iss pace

ispunct
is print

iscntrl

isascii

cis a letter
cis an upper case letter
c is a lower case letter
cis a digit
c is an alphanumeric character
c is a space, tab, carriage return, newline, or
formfeed
c is a punctuation character
c is a printing character, valued Ox20 (space)
through Ox7e (tilde)
c is a delete character (Oxff) or ordinary control
character (value less than Ox20)
c is an ASCII character, code less than Ox 100

- lib.ll -

EXP(M) EXP

NAME
exponential, logarithm, power, square root functions:
exp, log, loglO, pow, sqrt

SYNOPSIS
#include <math.h>

double exp(x)
double x;

double log(x)
double x;

double loglO(x)
double x;

double pow(x, y)
double x,y;

double sqrt(x)
double x;

DESCRIPTION
exp returns the exponential function of x.

log returns the natural logarithm of x; loglO returns the base 10
logarithm.

pow returns x ** y (x to the y-th power).

sqrt returns the square root of x.

SEE AlSO
Errors (0)

DIAGNOSTICS
If a function can't perform the computation, it sets an error
code in the global integer errno and returns an arbitrary value;
otherwise it returns the computed value without modifying
errno. The symbolic values which a function can place in errno
are EDOM, signifying that the argument was invalid, and
ERANGE, meaning that the value of the function couldn't be
computed These codes are defined in the file errno.h.

The following table lists, for each function, the error codes that
can be returned, the function value for that error, and the
meaning of the error. The symbolic values are defined in the
file mo.th.h.

- lib.12 -

EXP (M) EXP

~~ct1on--erroc_l_]ll-----~~m& __ _
exp £RANGE I H .1:: x > LOOHOG
II ERANGE I 0.0 X < LOGTINY

log EDOM I -HUGE x <= 0
loglO EDOM I -HUGE x <= 0
pow EDOM 1 -HUGE x < 0, x=y=O

11 ERANGE 1 HUGE y*log(x)>LOGHUGE
11 ERANGE 1 0.0 y*log(x)<LOGTINY

sqrt EDOM 1 0.0 x < 0.0

- lib.13-

FCLOSE (C) FCLOSE

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include "stdio.h"

fclose(stream)
FILE *stream;

fflush(stream)
FILE *stream;

DESCRIPTION
/close informs the system that the user's program has completed
its buffered i/o operations on a device or file which it had
previously opened (by calling fopen). /close releases the control
blocks and buffers which it had allocated to the device or file.
Also, when a file is being closed, fclose writes any internally
buffered information to the file.

/close is called automatically by exit.

!flush causes any buffered information for the named output
stream to be written to that file. The stream remains open.

If fclose or !flush is successful, it returns 0 as its value.

SEE ALSO
Standard I/0 (0)

DIAGNOSTICS
If the operation fails, -I is returned, and an error code is set in
the global integer errno.

- lib.14 -

FERROR (C) FERROR

NAME
feof, ferror, clearerr, fileno - stream status inquiries

SYNOPSIS
#include "stdio.h"

feof(stream)
FILE *stream;

ferror(stream)
FILE •stream;

clearerr(stream)
FILE *stream;

fileno(stream)
FILE *stream;

DFSCRIPTION
jeoj returns non-zero when end-of-file is reached on the
specified input stream, and zero otherwise.

jerror returns non-zero when an error has occurred on the
specified stream, and zero otherwise. Unless cleared by clearerr,
the error indication remains set until the stream is closed

clearerr resets an error indication on the specified stream.

jileno returns the integer file descriptor associated with the
stream.

These functions are defined as macros in the file stdio.h.

SEE ALSO
Standard 1/0 (0)

- Iib.lS-

FLOOR (M)

NAME
fabs, floor, ceil - absolute value, floor, ceiling routines

SYNOPSIS
#include <math.h>

double floor(x)
double x;

double ceil(x)
double x;

double fabs(x)
double x;

DESCRIPTION
jabs returns the absolute value of x.

floor returns the largest integer not greater than x.

ceil returns the smallest integer not less than x.

- lib.16 -

FLOOR

FOPEN (C) FOP EN

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include "stdio.h"

FILE *fopen(filename, mode)
char *filename, *mode;

FILE *freopen(filename, mode, stream)
char *filename, *mode;
FILE *stream;

FILE *fdopen(fd, mode)
char *mode;

DESCRIPTION
These functions prepare a device or disk file for access by the
standard i/o functions; this is called "opening" the device or file.
A file or device which has been opened by one of these
functions is called a "stream".

If the device or file is successfully opened, these functions
return a pointer, called a "file pointer" to a structure of type
FILE. This pointer is included in the list of parameters to
buffered i/o functions, such as gelc or pule, which the user's
program calls to access the stream.

fopen is the most basic of these functions: it simply opens the
device or file specified by the filename parameter for access
specified by the mode parameter. These parameters are
described below.

/reopen substitutes the named device or file for the device or
file which was previously associated with the specified stream. It
closes the device or file which was originally associated with the
stream and returns stream as its value. It is typically used to
associate devices and files with the preopened streams stdin,
stdout, and stderr.

fdopen opens a device or file for buffered i/o which has been
previously opened by one of the unbuffered open functions
open and creat. It returns as it's value a FILE pointer.

fdopen is passed the file descriptor which was returned when the
device or file was opened by open or creal. It's also passed the
mode parameter specifying the type of access desired mode must
agree with the mode of the open file.

The parameter filename is a pointer to a character string which
is the name of the device or file to be opened For details, see
the 1/0 overview section.

- lib.17-

FOPEN (C) FOP EN

nwde points to a character string which specifies how the user's
program intends to access the stream. The choices are as follows:

nwde meaning

r Open for reading only. If a file is opened, it is
positioned at the first character in it If the file
or device does not exist, NULL is returned

w Open for writing only. If a file is opened
which already exists, it is truncated to zero
length. If the file does not exist, it is created

a Open for appending. The calling program is
granted write-only access to the stream. The
current file position is the character after the
last character in the file. If the file does not
exist, it is created

x Open for writing. The file must not previously
exist. This option is not supported by Unix.

r+ Open for reading and writing. Same as "r", but
the stream may also be written to.

w+ Open for writing and reading. Same as "w'', but
the stream may also be read; different from "r+"
in the creation of a new file and loss of any
previous one.

a+ Open for appending and reading. Same as "a",
but the stream may also be read; different from
"r+" in file positioning and file creation.

x+ Open for writing and reading. Same as "x" but
the file can also be read

On systems which don't keep track of the last character in a file
(for example CP/M and Apple DOS), not all files can be
correctly positioned when opened in append mode. See the I/0
overview section for details.

SEE AlSO
I/0 (0), Standard I/0 (0)

DIAGNOSTICS
If the file or device cannot be opened, NULL is returned and an
error code is set in the global integer errno.

EXAMPLES
The following example demonstrates how fopen can be used in a
program.

-lib.18-

FOPEN (C)

#include "stdio.h"

main(argc,argv)
char **argv;
{

FILE *fopen(), *fp;

if ((fp = fopen(argv[1], argv[2])) == NULL) {
printf("You asked me to open %s",argv[I]);
printf("in the %s mode", argv[2]);
printf("but I can't!\n");

} else
printf("%s is open\n", argv[l]);

Here is a program which uses freopen:

#include "stdio.h"
main()
{

}

FILE *fp;
fp = freopen("dskfile", "w+", stdout);
printf("This message is going to dskfile\n");

Here is a program which uses fdopen:

#include "stdio.h"

FOP EN

dopen it(fd)
int fd; -/* value returned by previous call to open *I
{

}

FILE *fp;

if ((fp = fdopen(fd, "r+")) == NULL)
printf("can't open file for r+\n");

else
return(fp);

- lib.19-

FREAD (C) FREAD

NAME
fread, fwrite- buffered binary input/output

SYNOPSIS
#include "stdio.h"

int fread(buffer, size, count, stream)
char *buffer;
int size, count;
FILE •stream;

int fwrite(buffer, size, count, stream)
char *buffer;
int size, count;
FILE •stream;

DESCRIPTION
jread performs a buffered input operation and jwrite a buffered
write operation to the open stream specified by the parameter
stream

buffer is the address of the user's buffer which will be used for
the operation.

The function reads or writes count items, each containing size
bytes, from or to the stream.

fread and /write perform i/o using the functions getc and putc;
thus, no translations occur on the data being transferred

The function returns as its value the number of items actually
read or written.

SEE AlSO
Standard 1/0 (0), Errors (0), fopen, ferror

DIAGNOSTICS
fread and fwrite return 0 upon end of file or error. The
functions jeoj and !error can be used to distinguish between the
two. In case of an error, the global integer ermo contains a code
defining the error.

EXAMPLE
This is the code for reading ten integers from file 1 and writing
them again to file 2. It includes a simple check that there are
enough two-byte items in the first file:

- lib.20-

FREAD (C)

#include "stdio.h"

main()
{

}

ALE *fpl, *fp2, *fopen();
char *buf;
int size = 2, count= 10;

fpl = fopen("file 1 ","r");
fp2 = fopen("file2","w'');
if (fread(buf, size, count, fpl) != count)

printf("Not enough integers in file I \n");
fwrite(buf, size, count, fp2);

- lib.21 -

FREAD

FREXP(M) FREXP

NAME
frexp, ldexp, modf - build and unbuild real numbers

SYNOPSIS
#include <math.h>

double frexp(value, eptr)
double value;
int *eptr;

double ldexp(value, exp)
double value;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION
Given value, frexp computes integers x and n such that
value=x*2**n. x is returned as the value of frexp, and n is
stored in the int field pointed at by eptr.

ldexp returns the double quantity value*2**exp.

nwdf returns as its value the positive fractional part of value and
stores the integer part in the double field pointed at by iptr.

-lib.22-

FSEEK (C) FSEEK

NAME
fseek, ftell - reposition a stream

SYNOPSIS
#include "stdio.h"

int fseek(stream, offset, origin)
FILE *stream;
long offset;
int origin;

long ftell(stream)
FILE *stream;

DESCRIPTION
fseek sets the "current position" of a file which has been opened
for buffered i/o. The current position is the byte location at
which the next input or output operation will begin.

stream is the stream identifier associated with the file, and was
returned by fopen when the file was opened

offset and origin together specify the current position: the new
position is at the signed distance offset bytes from the
beginning, current position, or end of the file, depending on
whether origin is 0, 1, or 2, respectively.

offset can be positive or negative, to position after or before
the specified origin, respectively, with the limitation that you
can't seek before the beginning of the file.

For some operating systems (for example, CP/M and Apple
DOS) a file may not be able to be correctly positioned relative
to its end See the overview sections 1/0 and STANDARD 1/0
for details.

If fseek is successful, it will return zero.

/tell returns the number of bytes from the beginning to the
current position of the file associated with stream.

SEE ALSO
Standard 1/0 (0), 1/0 (0), lseek

DIAGNOSTICS
/seek will return -1 for improper seeks. In this case, an error
code is set in the global integer errno.

EXAMPLE
The following routine is equivalent to opening a file in "a+"
mode:

- lib.23-

FSEEK (C)

a plus(filenarne)
char *filename;
{

}

FILE *fp, *fopen();

if ((fp = fopen(filenarne, r+)) ==NULL)
fp = fopen(filenarne, w+);
fseek(fp, OL, 2); /* position 1 byte past

last character *I

FSEEK

To set the current position back 5 characters before the present
current position, the following call can be used:

fseek(fp, -5L, I)

- lib.24-

GETC (C) GETC

NAME
getc, agetc, getchar, getw

SYNOPSIS
#include "stdio.h"

int getc(stream)
FILE *stream;

int agetc(stream)
FILE *stream;

int getchar()

int getw(stream)
FILE *stream;

DESCRIPTION

/* non-Unix function • I

getc returns the next character from the specified input stream.

agetc is used to access files of text. It generally behaves like getc
and returns the next character from the named input stream. It
differs from getc in the following ways:

* It translates end-of-line sequences (eg, carriage return
on Apple DOS; carriage return-line feed on CP/M) to a
single newline ('\ \n') character.

• It translates an end-of-file sequence (eg, a null
character on Apple DOS; a control-z character on
CP/M) to EOF;

* It ignores null characters (' ') on all systems except
Apple DOS;

* On some systems, the most significant bit of each
character returned is set to zero.

agetc is not a UNIX function. It is, however, provided with all
Aztec C packages, and provides a convenient, system­
independent way for programs to read text.

getchar returns text characters from the standard input stream
(stdin). It is implemented as the call agetc(stdin).

getw returns the next word from the specified input stream. It
returns EOF (-1) upon end-of-file or error, but since that is a
good integer value, feof and jerror should be used to check the
success of getw. It assumes no special alignment in the file.

SEE ALSO
I/0 (0), Standard I/0 (0), fopen, fclose

DIAGNOSTICS
These functions return EOF (-1) at end of file or if an error
occurs. The functions feof and ferror can be used to distinguish
the two. In the latter case, an error code is set in the global

- lib.25-

GETC (C) GETC

integer errno.

- lib.26 -

GETS (C) GETS

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include "stdio.h"

char *gets(s)
char *s;

char *fgets(s, n, stream)
char *s;
FILE *stream;

DFSCRIPTION
gets reads a string of characters from the standard input stream,
stdin, into the buffer pointed by s. The input operation
terminates when either a newline character (\ \n) or end of file
is encountered

fgets reads characters from the specified input stream into the
buffer pointer at by s until either (1) n-1 characters have been
read, (2) a newline character (\ \n) is read, or (3) end of file or
an error is detected on the stream.

Both functions return s, except as noted below.

gets and fgets differ in their handling of the newline character:
gets doesn't put it in the caller's buffer, while fgets does. This is
the behavior of these functions under UNIX

These functions get characters using agetc; thus they can only be
used to get characters from devices and files which contain text
characters.

SEE ALSO
1/0 (0), Standard 1/0 (0), ferror

DIAGNOSTICS
gets and fgets return the pointer NULL (0) upon reaching end
of file or detecting an error. The functions feof and ferror can
be used to distinguish the two. In the latter case, an error code
is placed in the global integer errno.

- lib.27-

IOCTL (C) IOCTL

NAME
ioctl, isatty- device i/o utilities

SYNOPSIS
#include "sgtty.h"

ioctl(fd, cmd, stty)
struct sgttyb •stty;

isatty(fd)

DESCRIPTION
ioctl sets and determines the mode of the console.

For more details on ioctl, see the overview section on console
1/0.

isatty returns non-zero if the file descriptor fd is associated with
the console, and zero otherwise.

SEE ALSO
Console 1/0 (0)

- lib.28-

LSEEK (C) LSEEK

NAME
lseek - change current position within file

SYNOPSIS
long int lseek(fd, offset, origin)
int fd, origin;
long offset;

DESCRIPTION
!seek sets the current position of a file which has been opened
for unbuffered i/o. This position determines where the next
character will be read or written.

fd is the file descriptor associated with the file.

The current position is set to the location specified by the offset
and origin parameters, as follows:

• If origin is 0, the current position is set to offset bytes
from the beginning of the file.

• If origin is 1, the current position is set to the current
position plus offset.

• If origin is 2, the current position is set to the end of the
file plus offset.

The offset can be positive or negative, to position after or
before the specified origin, respectively.

Positioning of a file relative to its end (that is, calling !seek with
origin set to 2) cannot always be correctly done on all systems
(for example, CP/M and Apple DOS). See the section entitled
I/0 for details.

If !seek is successful, it will return the new position in the file
(in bytes from the beginning of the file).

SEE ALSO
Unbuffered I/0 (0), I/0 (0)

DIAGNOSTICS
If !seek fails, it will return -1 as its value and set an error code
in the global integer errno. errno is set to EBADF if the file
descriptor is invalid It will be set to EINVAL if the offset
parameter is invalid or if the requested position is before the
beginning of the file.

EXAMPLES
1. To seek to the beginning of a file:

lseek(fd, OL, 0);

!seek will return the value zero (0) since the current position in
the file is character (or byte) number zero.

- lib.29-

LSEEK (C) LSEEK

2. To seek to the character following the last character in the
file:

pos = lseek(fd, OL, 2);

The variable pos will contain the current position of the end of
file, plus one.

3. To seek backward five bytes:

lseek(fd, -5L, I);

The third parameter, I, sets the origin at the current position in
the file. The offset is -5. The new position will be the origin
plus the offset So the effect of this call is to move backward a
total of five characters.

4. To skip five characters when reading in a file:

read(fd, buf, count);
lseek(fd, 5L, 1);
read(fd, buf, count);

- lib.30-

MALLOC (C) MALLOC

NAME
malloc, calloc, realloc, free - memory allocation

SYNOPSIS
char *malloc(size)
unsigned size;

char •calloc(nelem, elemsize)
unsigned nelem, elemsize;

char *realloc(ptr, size)
char *ptr;
unsigned size;

free(ptr)
char *ptr;

DESCRIPTION
These functions are used to allocate memory from the "heap",
that is, the section of memory available for dynamic storage
allocation.

malloc allocates a block of size bytes, and returns a pointer to it.

calloc allocates a single block of memory which can contain
nelem elements, each elemsize bytes big, and returns a pointer to
the beginning of the block Thus, the allocated block will contain
(nelem * elemsize) bytes. The block is initialized to zeroes.

realloc changes the size of the block pointed at by ptr to size
bytes, returning a pointer to the block If necessary, a new block
will be allocated of the requested size, and the data from the
original block moved into it. The block passed to realloc can
have been freed, provided that no intervening calls to calloc,
malloc, or realloc have been made.

free deallocates a block of memory which was previously
allocated by malloc, calloc, or realloc; this space is then available
for reallocation. The argument ptr to free is a pointer to the
block

malloc and free maintain a circular list of free blocks. When
called, malloc searches this list beginning with the last block
freed or allocated coalescing adjacent free blocks as it searches.
It allocates a buffer from the first large enough free block that it
encounters. If this search fails, it calls sbrk to get more memory
for use by these functions.

SEE ALSO
Memory Usage (0), break (S)

DIAGNOSTICS
malloc. calloc and realloc return a null pointer (0) if there is no
available block of memory.

- lib.31 -

MALLOC (C) MALLOC

free returns -1 if it's passed an invalid pointer.

-lib.32-

MOVMEM(C) MOVMEM

NAME
movmem, setmem, swapmem

SYNOPSIS
movmem(src, dest, length)
char *src, *dest;
int length;

setmem(area, length, value)
char *area;

swapmem(sl, s2, len)
char *sl, *s2;

DESCRIPTION

I* non-Unix function *I

I* non-Unix function *I

I* non-Unix function *I

movmem copies length characters from the block of memory
pointed at by src to that pointed at by dest.

movmem copies in such a way that the resulting block of
characters at dest equals the original block at src.

setmem sets the character value in each byte of the block of
memory which begins at area and continues for length bytes.

swapmem swaps the blocks of memory pointed at by sl and s2.
The blocks are len bytes long.

- lib.33-

OPEN (C) OPEN

NAME
open

SYNOPSIS
#include "fcntl.h"

open(name, mode) /* calling sequence on most systems* I
char *name;

I* calling sequence on some systems (see below): *I
open(name, mode, param3)
char *name;

DESCRIPTION
open opens a device or file for unbuffered ilo. It returns an
integer value called a file descriptor which is used to identify
the file or device in subsequent calls to unbuffered il o
functions.

name is a pointer to a character string which is the name of the
device or file to be opened For details, see the overview section
IIO.

nwde specifies how the user's program intends to access the file.
The choices are as follows:

nwde
0 RDONLY
0-WRONLY
0-RDWR
0-CREAT
0-TRUNC
0-EXCL

0 APPEND

meaning
read only
write only
read and write
Create file, then open it
Truncate file, then open it
Cause open to fail if file already exists;
used with 0 CREA T
Position filefor appending data

These open modes are integer constants defined in the files
jcntl.h. Although the true values of these constants can be used
in a given call to open, use of the symbolic names ensures
compatibility with UNIX and other systems.

The calling program must specify the type of access desired by
including exactly one of 0 RDONL Y, 0 WRONL Y, and
0 RDWR in the mode parameter. The threeremaining values
are optional They may be included by adding them to the mode
parameter, as in the examples below.

By default, the open will fail if the file to be opened does not
exist. To cause the file to be created when it does not already
exist, specify the 0 CREA T option. If 0 EXCL is given in
addition to 0 CREAT, the open will failif the file already
exists; otherwise, the file is created

-lib.34-

OPEN (C) OPEN

If the 0 TRUNC option is specified, the file will be truncated
so that nothing is in it. The truncation is performed by simply
erasing the file, if it exists, and then creating it So it is not an
error to use this option when the file does not exist

Note that when 0 _ TRUNC is used, 0 _ CREA T is not needed.

If 0 APPEND is specified, the current position for the file
(thatls, the position at which the next data transfer will begin)
is set to the end of the file. For systems which don't keep track
of the last character written to a file (for example, CP/M and
Apple DOS), this positioning cannot always be correctly done.
See the ljO overview section for details. Also, this option is not
supported by UNIX

param3 is not needed or used on many systems. If it is needed
for your system, the System Dependent Library Functions
chapter will contain a description of the open function, which
will define this parameter.

If open does not detect an error, it returns an integer called a
"file descriptor." This value is used to identify the open file
during unbuffered i/o operations. The file descriptor is very
different from the file pointer which is returned by fopen for
use with buffered i/o functions.

SEE ALSO
I/0 (0), Unbuffered I/0 (0), Errors (0)

DIAGNOSTICS
If open encounters an error, it returns -1 and sets the global
integer errno to a symbolic value which identifies the error.

EXAMPLES
1. To open the file, testfile, for read-only access:

fd = open("testfile", 0 _ RDONL Y);

If testfile does not exist open will just return -1 and set errno to
ENOENT.

2. To open the file, sub1, for read-write access:

fd = open("sub1", O_RDWR+O_CREAT);

If the file does not exist, it will be created and then opened

3. The following program opens a file whose name is given on
the command line. The file must not already exist.

- lib.35-

OPEN (C)

main(argc, argv)
char **argv;
{

int fd;

OPEN

fd = open(*++argv, 0 WRONL Y +0 CREAT +0 EXCI
if(fd=-1) { - - -

}

if (errno == EEXISl)
printf("file already exists\n");
else if (errno == ENOENl)

printf("unable to open file\n");
else

printf("open error\n");

-Iib.36-

PRINTF (C, M) PRINTF

NAME
printf, fprintf, sprintf, format
- formatted output conversion functions

SYNOPSIS
#include "stdio.h"

printf(fmt (,arg) ...)
char *fmt;

fprintf(stream, fmt (,arg) ...)
FILE *stream;
char *fmt;

sprintf(buffer, fmt (,arg) ...)
char *buffer, *fmt;

format(func, fmt, argptr)
int (*func)();
char *fmt;
unsigned *argptr;

DESCRIPTION
These functions convert and format their arguments (arg or
argptr) according to the format specification fmt. They differ in
what they do with the formatted result:

print! outputs the result to the standard output stream,
stdout;

fprintf outputs the result to the stream specified in its first
argument, stream;

sprint! places the result in the buffer pointed at by its first
argument, buffer, and terminates the result with the null
character, ' '.

format calls the function june with each character of the result.
In fact, print/, fprintf, and sprint! call format with each character
that they generate.

These functions are in both c.lib and m.lib, the difference being
that the c.lib versions don't support floating point conversions.
Hence, if floating point conversion is required, the m.lib
versions must be used If floating point conversion isn't
required, either version can be used To use m.lib's version, m.lib
must be specified before c.lib at the time the program is linked

The character string pointed at by the fmt parameter, which
directs the print functions, contains two types of items: ordinary
characters, which are simply output, and conversion
specifications, each of which causes the conversion and output
of the next successive arg.

- lib.37-

PRINTF (C, M) PRINTF

A conversion specification begins with the character % and
continues with:

* An optional minus sign (-) which specifies left adjustment
of the converted value in the output field;

* An optional digit string specifying the 'field width' for the
conversion. If the converted value has fewer characters
than this, enough blank characters will be output to make
the total number of characters output equals the field
width. If the converted value has more characters than the
field width, it will be truncated The blanks are output
before or after the value, depending on the presence or
absence of the left- adjustment indicator. If the field width
digits have a leading 0, 0 is used as a pad character rather
than blank

* An optional period, '.', which separates the field width
from the following field;

• An optional digit string specifying a precision; for floating
point conversions, this specifies the number of digits to
appear after the decimal point; for character string
conversions, this specifies the maximum number of
characters to be printed from a string;

* Optionally, the character /, which specifies that a
conversion which normally is performed on an int is to be
performed on a long. This applies to the d, o, and x
conversions.

* A character which specifies the type of conversion to be
performed

A field width or precision may be • instead of a number,
specifying that the next available arg, which must be an int,
supplies the field width or precision.

The conversion characters are:

' d, o, or x The int in the corresponding arg is converted to
decimal, octal, or hexadecimal notation,
respectively, and output;

u The unsigned integer arg is converted to
decimal notation;

c The character arg is output Null characters are
ignored;

s The characters in the string pointed at by arg
are output until a null character or the number
of characters indicated by the precision is
reached If the precision is zero or missing, all
characters in the string, up to the terminating
null, are output;

f The float or double arg is converted to decimal
notation in the style '[-]dddddd'. The number

- lib.38-

PRINTF (C, M) PRINTF

e

g

%

SEE ALSO

of d's after the decimal point is equal to the
precision given in the conversion specification.
If the precision is missing, it defaults to six
digits. If the precision is explicitly 0, the
decimal point is also not printed
The float or double arg is converted to the style
'[-]dddde[-]dd', where there is one digit before
the decimal point and the number after is equal
to the precision given. If the precision is
missing, it defaults to six digits.
The float or double arg is printed in style d, f,
or e, whichever gives full precision in
minimum space.
Output a%. No argument is converted

Standard 1/0 (0)

EXAMPLES

I. The following program fragment

char *name; float amt;
printf("your total, %s, is $%f\n", name, amt);

will print a message of the form

your total, Alfred, is $3.120000

Since the precision of the %f conversion wasn't specified,
it defaulted to six digits to the right of the decimal point.

2. This example modifies example 1 so that the field width
for the %s conversion is three characters, and the field
width and precision of the %f conversion are 10 and 2,
respectively. The %f conversion will also use 0 as a pad
character, rather than blank

char *name; float amt;
printf("your total, %3s, is $%10.2f\n", name, amt);

3. This example modifies example 2 so that the field width of
the %s conversion and the precision of the %f conversion
are taken from the variables nw and ap:

char *name; float amt; int nw, ap;
printf("your total %*s,is $%10.*f\n",nw,name,ap,amt);

4. This example demonstrates how to use the format function
by listing print/, which calls format with each character
that it generates.

- lib.39-

PRINTF (C, M)

printf(fmt,args)
char *fmt~ unsigned args~
{

}

extern int putchar();
format(putchar,fmt,&args);

- lib.40-

PRINTF

PUTC(C) PUTC

NAME
putc, aputc, putchar, putw, puterr
- put character or word to a stream

SYNOPSIS
#include "stdio.h"

putc(c, stream)
char c;
FILE *stream;

aputc(c, stream)
char c;
FILE *stream;

putchar(c)
char c;

putw(w,stream)
FILE *stream;

puterr(c)
char c;

DESCRIPTION

/* non-Unix function *I

/* non-Unix function • I

putc writes the character c to the named output stream. It
returns c as its value.

aputc is used to write text characters to files and devices. It
generally behaves like putc, and writes a single character to a
stream. It differs from putc as follows:

* When a newline character is passed to aputc, an end- of­
line sequence (eg, carriage return followed by line feed on
CP IM, and carriage return only on Apple DOS) is written
to the stream;

• The most significant bit of a character is set to zero before
being written to the stream.

* aputc is not a UNIX function. It is, however, supported on
all Aztec C systems, and provides a convenient, system­
independent way for a program to write text.

* putchar writes the character c to the standard output
stream, stdout. It's identical to aputc(c, stdout).

* putw writes the word w to the specified stream. It returns
w as its value. putw neither requires nor causes special
alignment in the file.

* puterr writes the character c to the standard error stream,
stderr. It's identical to aputc(c, stderr). It is not a UNIX
function.

SEE ALSO
Standard IIO

- lib.41 -

PUTC (C) PUTC

DIAGNOSTICS
These functions return EOF (-1) upon error. In this case, an
error code is set in the global integer errno.

- lib.42-

PUTS (C) PUTS

NAME
puts, fputs - put a character string on a stream

SYNOPSIS
#include "stdio.h"

puts(s)
char •s;

fputs(s, stream)
char •s;
FILE *stream;

DESCRIPTION
puts writes the null-terminated string s to the standard output
stream, stdout, and then an end-of-line sequence. It returns a
non-negative value if no errors occur.

fputs copies the null-terminated string s to the specified output
stream. It returns 0 if no errors occur.

Both functions write to the stream using aputc. Thus, they can
only be used to write text. See the PUTC section for more
details on aputc.

Note that puts and fputs differ in this way: On encountering a
newline character, puts writes an end-of-line sequence and fputs
doesn't.

SEE ALSO
Standard 1/0 (0), putc

DIAGN<l:)TICS
If an error occurs, these functions return EOF (-1) and set an
error code in the global integer errno.

- lib.43 -

QSORT (C) QSORT

NAME
qsort - sort an array of records in memory

SYNOPSIS
qsort(array, number, width, func)
char *array;
unsigned number;
unsigned width;
int (*func)();

DESCRIPTION
qsort sorts an array of elements using Hoare's Quicksort
algorithm. array is a pointer to the array to be sorted; number is
the number of record to be sorted; width is the size in bytes of
each array element; june is a pointer to a function which is
called for a comparison of two array elements.

june is passed pointers to the two elements being compared It
must return an integer less than, equal to, or greater than zero,
depending on whether the first argument is to be considered less
than, equal to, or greater than the second

EXAMPLE
The Aztec linker, LN, can generate a file of text containing a
symbol table for a program. Each line of the file contains an
address at which a symbol is located, followed by a space,
followed by the symbol name. The following program reads such
a symbol table from the standard input, sorts it by address, and
writes it to standard output.

- lib.44-

QSORT (C)

#include "stdio.h"
#define MAXLINES 2000
#define LINESIZE 16
char *Iines[MAXLINES], *malloc();

main()
{

int i,numlines, cmp();
char buf1LINESIZE];

QSORT

for (numlines=O; numlines<MAXLINES; ++numlines){
if (gets(buf) == NULL)

}

}

break;
lines[numlines] = malloc(LINESIZE);
strcpy(lines[numlines], buf);

qsort(lines, numlines, 2, cmp);
for (i = 0; i <numlines; ++i)

printf("Ofos\n", lines[i]);

cmp(a,b)
char **a, **b;
{

return strcmp(*a, *b);
}

- lib.45-

RAN (M)

NAME
ran - random number generator

SYNOPSIS
double ran()

DESCRIPTION

RAN

ran returns as its value a random number between 0.0 and 1.0.

-lib.46-

READ (C) READ

NAME
read - read from device or file without buffering

SYNOPSIS
read (fd, buf,bufsize)
int fd, bufsize; char *buf;

DESCRIPTION
read reads characters from a device or disk file which has been
previously opened by a call to open or creat. In most cases, the
information is read directly into the caller's buffer.

fd is the file descriptor which was returned to the caller when
the device or file was opened

buf is a pointer to the buffer into which the information is to be
placed

bufsize is the number of characters to be transferred

If read is successful, it returns as its value the number of
characters transferred

If the returned value is zero, then end-of-file has been reached,
immediately, with no bytes read

SEE ALSO
Unbuffered I/0 (0), open, close

DIAGNOSTICS
If the operation isn't successful, read returns -1 and places a
code in the global integer errno.

- lib.47-

RENAME (C) RENAME

NAME
rename - rename a disk file

SYNOPSIS
rename(oldname, newname)
char *oldname,*newname;

DESCRIPTION
rename changes the name of a file.

/* non-Unix function *I

oldname is a pointer to a character array containing the old file
name, and newname is a pointer to a character array containing
the new name of the file.

If successful, rename returns 0 as its value; if unsuccessful, it
returns -1.

If a file with the new name already exists, rename sets
E EXIST in the global integer errno and returns -1 as its value
without renaming the file.

- lib.48-

SCANF (C) SCANF

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include "stdio.h"

scanf(format [,pointer) ...)
char *format;

fscanf(stream, format [,pointer) ...)
FILE *stream;
char *format;

sscanf(buffer, format [,pointer) ...)
char *buffer, *format;

DESCRIPTION
These functions convert a string or stream of text characters, as
directed by the control string pointed at by the format
parameter, and place the results in the fields pointed at by the
pointer parameters.

The functions get the text from different places:

scan/ gets text from the standard input stream, stdin;

fscanf gets text from the stream specified in its first
parameter, stream;

sscanf gets text from the buffer pointed at by its first
parameter, buffer.

The scan functions are in both c.lib and m.lib, the difference
being that the c.lib versions don't support floating point
conversions. Hence, if floating point conversion is required, the
m.lib versions must be used If floating point conversions aren't
required, either version can be used To use m.lib's version, m.lib
must be specified before c.lib when the program is linked

The control string pointed at by format contains the following
'control items':

* Conversion specifications;
* 'White space' characters (space, tab newline);
• Ordinary characters; that is, characters which aren't

part of a conversion specification and which aren't
white space.

A scan function works its way through a control string, trying to
match each control item to a portion of the input stream or
buffer. During the matching process, it fetches characters one at
a time from the input When a character is fetched which isn't
appropriate for the control item being matched, the scan
function pushes it back into the input stream or buffer and

- lib.49-

SCANF (C) SCANF

finishes processing the current control item. This pushing back
frequently gives unexpected results when a stream is being
accessed by other i/o functions, such as getc, as well as the scan
function. The examples below demonstrate some of the
problems that can occur.

The scan function terminates when it first fails to match a
control item or when the end of the input stream or buffer is
reached It returns as its value the number of matched
conversion specifications, or EOF if the end of the input stream
or buffer was reached

Matching 'white space' characters

When a white space character is encountered in the control
string, the scan function fetches input characters until the first
non-white-space character is read The non-white-space
character is pushed back into the input and the scan function
proceeds to the next item in the control string.

Matching ordinary characters

If an ordinary character is encountered in the control string, the
scan function fetches the next input character. If it matches the
ordinary character, the scan function simply proceeds to the
next control string item. If it doesn't match, the scan function
terminates.

Matching conversion specifications

When a conversion specification is encountered in the control
string, the scan function first skips leading white space on the
input stream or buffer. It then fetches characters from the
stream or buffer until encountering one that is inappropriate for
the conversion specification. This character is pushed back into
the input

If the conversion specification didn't request assignment
suppression (discussed below), the character string which was
read is converted to the format specified by the conversion
specification, the result is placed in the location pointed at by
the current pointer argument, and the next pointer argument
becomes current The scan function then proceeds to the next
control string item.

If assignment suppression was requested by the conversion
specification, the scan function simply ignores the fetched input
characters and proceeds to the next control item.

Details of input conversion

A conversion specification consists of:

• The character '%', which tells the scan function that it

- lib.50-

SCANF (C) SCANF

has encountered a conversion specification;
* Optionally, the assignment suppression character '*';
* Optionally, a 'field width'; that is, a number specifying

the maximum number of characters to be fetched for
the conversion;

* A conversion character, specifying the type of
conversion to be performed

If the assignment suppression character is present ina conversion
specification, the scan function will fetch characters as if it was
going to perform the conversion, ignore them, and proceed to
the next control string item.

The following conversion characters are supported:

% A single '%' is expected in the input; no assignment
is done.

d A decimal integer is expected; the input digit string
is converted to binary and the result placed in the int
field pointed at by the current pointer argument;

o An octal integer is expected; the corresponding
pointer should point to an int field in which the
converted result will be placed;

x A hexadecimal integer is expected; the converted
value will be placed in the int field pointed at by the
current pointer argument;

s A sequence of characters delimited by white space
characters is expected; they, plus a terminating null
character, are placed in the character array pointed
at by the current pointer argument

c A character is expected It is placed in the char field
pointed at by the current pointer. The normal skip
over leading white space is not done; to read a single
char after skipping leading white space, use '%Is'.
The field width parameter is ignored, so this
conversion can be used only to read a single
character.

[A sequence of characters, optionally preceded by
white space but not terminated by white space is
expected The input characters, plus a terminating
null character, are placed in the character array
pointed at by the current pointer argument The left
bracket is followed by:

* Optionally, a'"'' or'-' character;
* A set of characters;
* A right bracket, ']'.

- lib.51 -

SCANF (C) SCANF

If the first character in the set isn't A or -, the set
specifies characters which are allowed; characters are
fetched from the input until one is read which isn't
in the set

If the first character in the set is A or -, the' set
specifies characters which aren't allowed; characters
are fetched from the input until one is read which is
in the set

e A floating point number is expected The input string
is converted to floating point format and stored in
the float field pointed at by the current pointer
argument. The input format for floating point
numbers consists of an optionally signed string of
digits, possibly containing a decimal point, optionally
followed by an exponent field consisting of an E or e
followed by an optionally signed digit.

The conversion characters d, o, and x can be capitalized or
preceded by I to indicate that the corresponding pointer is to a
long rather than an int. Similarly, the conversion characters e
and f can be capitalized or preceded by I to indicate that the
corresponding pointer is to a double rather than a float.

The conversion characters o, x, and d can be optionally preceded
by h to indicate that the corresponding pointer is to a short rather
than an int. Since short and int fields are the same in Aztec C,
this option has no effect.

SEE AlSO
Standard 1/0 (0)

EXAMPLES

1. In this program fragment, scan! is used to read values for
the int x, the float y, and a character string into the char
array z:

int x; float y; char z[50];
scanf("o/od%£'1/os", &x, &y, z);

The input line

32 75.36e-l rufus

will assign 32 to x, 7.536 to y, and "rufus " to z. scan! will
return 3 as its value, signifying that three conversion
specifications were matched

The three input strings must be delimited by 'white space'
characters; that is, by blank, tab, and newline characters.
Thus, the three values could also be entered on separate

-lib.52-

SCANF (C) SCANF

lines, with the white space character newline used to
separate the values.

2. This example discusses the problems which may arise
when mixing scan! and other input operations on the same
stream.

In the previous example, the character string entered for
the third variable, z, must also be delimited by white space
characters. In particular, it must be terminated by a space,
tab, or newline character. The first such character read by
scan! while getting characters for z will be 'pushed back'
into the standard input stream. When another read of stdin
is made later, the first character returned will be the white
space character which was pushed back

This 'pushing back' can lead to unexpected results for
programs that read stdin with functions in addition to
scan/. Suppose that the program in the first example wants
to issue a gets call to read a line from stdin, following the
scan! to stdin. scan! will have left on the input stream the
white space character which terminated the third value
read by scan/. If this character is a newline, then gets will
return a null string, because the first character it reads is
the pushed back newline, the character which terminates
gets. This is most likely not what the program had in mind
when it called gets.

It is usually unadvisable to mix scan! and other input
operations on a single stream.

3. This example discusses the behavior of scan! when there
are white space characters in the control string.

The control string in the first example was "%d%f%s". It
doesn't contain or need any white space, since scan/, when
attempting to match a conversion specification, will skip
leading white space. There's no harm in having white
space before the %d, between the %d and %f, or between
the %f and %s. However, placing a white space character
after the %s can have unexpected results. In this case,
scan! will, after having read a character string for z, keep
reading characters until a non-white-space character is
read This forces the operator to enter, after the three
values for x, y, and z, a non-white space character; until
this is done, scan! will not terminate.

The programmer might place a newline character at the
end of a control string, mistakenly thinking that this will
circumvent the problem discussed in example 2. One
might think that scan! will treat the newline as it would an

- lib.53-

SCANF (C) SCANF

ordinary character in the control string; that is, that scan!
will search for, and remove, the terminating newline
character from the input stream after it has matched the z
variable. However, this is incorrect, and should be
remembered as a common misinterpretation.

4. scan/ only reads input it can match. If, for the first
example, the input line had been

32 rufus 75.36e-1

scan/ would have returned with value 1, signifying that
only one conversion specification had been matched x
would have the value 32, y and z would be unchanged All
characters in the input stream following the 32 would still
be in the input stream, waiting to be read

5. One common problem in using scan/ involves
mismatching conversion specifications and their
corresponding arguments. If the first example had declared
y to be a double, then one of the following statements
would have been required:

scanf("%d%lfll/os", &x, &y, z);

or

scanf("%d%F%s", &x, &y, z);

to tell scan/ that the floating point variable was a double
rather than a float

6. Another common problem in using scan/ involves passing
scan! the value of a variable rather than its address. The
following call to scan/ is incorrrect:

int x; float y; char z[50];
scanf("%d%fll/os", x, y, z);

scan/ has been passed the value contained in x and y, and
the address of z, but it requires the address of all three
variables. The "address of'' operator, &, is required as a
prefix to x and y. Since z is an array, its address is
automatically passed to scan/, so z doesn't need the &
prefix, although it won't hurt if it is given.

7. Consider the following program fragment:

int x; float y; char z[50];
scanf("%2d%f0/o*d%[1234567890]", &x, &y, z);

When given the following input:

12345 678 90a65

scan/ will assign 12 to x, 345.0 to y, skip '678', and place

- lib.54-

SCANF (C) SCANF

the string '90 ' in z. The next call to getchar will return 'a'.

- lib.55-

SETBUF (C) SETBUF

NAME
setbuf - assign buffer to a stream

SYNOPSIS
#include "stdio.h"

setbuf(stream, buf)
FILE •stream;
char *buf;

DESCRIPTION
setbuf defines the buffer that's to be used for the i/o stream
stream. If buf is not a NULL pointer, the buffer that it points at
will be used for the stream instead of an automatically allocated
buffer. If buf is a NULL pointer, the stream will be completely
unbuffered

When buf is not NULL, the buffer it points at must contain
BUFSIZ bytes, where BUFSIZ is defined in stdio.h.

setbuf must be called after the stream has been opened, but
before any read or write operations to it are made.

If the user's program doesn't specify the buffer to be used for a
stream, the standard i/o functions will dynamically allocate a
buffer for the stream, by calling the function malloc, when the
first read or write operation is made on the stream. Then, when
the stream is closed, the dynamically allocated buffer is freed by
calling free.

SEE AlSO
Standard I/0 (0), malloc

- lib.56-

SETJMP (C) SETJMP

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include "setjmp.h"

setjmp(env)
jmp_buf env;

longjmp(env, val)
jmp_ buf env;

DESCRIPTION
These functions are useful for dealing with errors encountered
by the low-level functions of a· program.

setjmp saves its stack environment in the memory block pointed
at by env and returns 0 as its value.

longjmp causes execution to continue as if the last call to setjmp
was just terminating with value val. val cannot be zero.

The parameter env is a pointer to a block of memory which can
be used by setjmp and longjmp. The block must be defined using
the typedef jmp_buf.

WARNING
longjmp must not be called without env having been initialized
by a call to setjmp. It also must not be called if the function that
called setjmp has since returned

EXAMPLE
In the following example, the function getall builds a record
pertaining to a customer and returns the pointer to the record if
no errors were encountered and 0 otherwise.

getall calls other functions which actually build the record.
These functions in turn call other functions, which in turn ...

getall defines, by calling setjmp, a point to which these functions
can branch if an unrecoverable error occurs. The low level
functions abort by calling longjmp with a non-zero value.

If a low level function aborts, execution continues in getall as if
its call to setjmp had just terminated with a non-zero value.
Thus by testing the value returned by setjmp getall can
determine whether setjmp is terminating because a low level
function aborted

- lib.57-

SETJMP (C) SETJMP

#include "setjmp.h"

jmp _ buf envbuf; I* environment saved here by setjmp *I
getall(ptr)
char *ptr; I* ptr to record to be built *I
{

}

if (setjmp(envbuf))
I* a low level function has aborted *I
return 0;

getfieldl(ptr);
getfield2(ptr);
getfield3(ptr);
return ptr;

Here's one of the low level functions:

getsu bfld21 (ptr)
char *ptr;
{

if (error)
longjmp(envbuf, -I);

}

- lib.58-

SIN (M) SIN

NAME
trigonometric functions:
sin, cos, tan, cotan, asin, acos, atan, atan2

SYNOPSIS
#include <math.h>

double sin(x)
double x;

double cos(x)
double x;

double tan(x)
double x;

double cotan(x)
double x;

double asin(x)
double x;

double acos(x)
double x;

double atan(x)
double x;

double atan2(x,y)
double x;

DFSCRIPTION
sin, cos, tan, and cotan return trigonometric functions of radian
arguments.

asin returns the arc sin in the range -pi/2 to pi/2.

acos returns the arc cosine in the range 0 to pi.

atan returns the arc tangent of x in the range -pi/2 to pi/2.

atan2 returns the arc tangent of x/y in the range -pi to pi.

SEE ALSO
Errors (0)

DIAGNOSTICS
If a trig function can't perform the computation, it returns an
arbitrary value and sets a code in the global integer errno;
otherwise, it returns the computed number, without modifying
errno.

A function will return the symbolic value EDOM if the
argument is invalid, and the value ERANGE if the function
value can't be computed EDOM and ERANGE are defined in
the file errno.h.

- lib.59-

SIN (M) SIN

The values returned by the trig functions when the computation
can't be performed are listed below. The symbolic values are
defined in math.h.

I function
Ism
I cos
I tan
I cotan
1 cotan
1 cotan
I asin
I acos
I atan2

I error
1
1

ERANGE
I ERANGE
I ERANGE
1 ERANGE
1 ERANGE
I ERANGE
I EDOM
I EDOM
I EDOM

I f(x)
1 o.o
I o.o
I o.o
1 HUGE
I -HUGEi
1 o.o
I o.o
I o.o
I o.o

- lib.60-

I
I meaning I
I abs(x) > XMAX I
I abs(x) > XMAX I
I abs(x) > XMAX I
I O<x< XMIN 1

I -XMIN <X <0 I
I abs(x) >= XMAX I
I abs(x) > 1.0 I
I abs(x) > 1.0 I
lx=y=O I

SINH (M) SINH

NAME
sinh, cosh, tanh

SYNOPSIS
#include <math.h>

double sinh(x)
double x;

double cosh(x)
double x;

double tanh(x)
double x;

DESCRIPTION
These functions compute the hyperbolic functions of their
arguments.

SEE ALSO
Errors (0)

DIAGNOSTICS
If the absolute value of the argument to sinh or cosh is greater
than 348.6, the function sets the symbolic value ERANGE in
the global integer ermo and returns a huge value. This code is
defined in the file ermo.h.

If no error occurs, the function returns the computed value
without modifying ermo.

- lib.61 -

STRING (C) STRING

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy,
strlen, index, rindex - string operations

SYNOPSIS
char •strcat(sl, s2)
char *sl, *s2;

char •strncat(sl, s2, n)
char *sl, *s2;

strcmp(sl, s2)
char *sl, *s2;

strncmp(sl, s2, n)
char *sl, s2;

char •strcpy(sl, s2)
char *sl, *s2;

char *strncpy(sl, s2, n)
char *sl, *s2;

strlen(s)
char •s;

char *index(s, c)
char •s;

char *rindex(s, c)
char •s;

DESCRIPTION
These functions operate on null-terminated strings, as follows:

strcat appends a copy of string s2 to string sl. stmcat copies at
most n characters. Both terminate the resulting string with the
null character (\0) and return a pointer to the first character of
the resulting string.

strcmp compares its two arguments and returns an integer
greater than, equal, or less than zero, according as sl is
lexicographically greater than, equal to, or less than s2. stmcmp
makes the same comparison but looks at n characters at most

strcpy copies string s2 to sl stopping after the null character has
been moved stmcpy copies exactly n characters: if s2 contains
less than n characters, null characters will be appended to the
resulting string until n characters have been moved; if s2
contains n or more characters, only the first n will be moved,
and the resulting string will not be null terminated

strlen returns the number of characters which occur in s up to
the first null character.

- lib.62-

STRING (C) STRING

index returns a pointer to the first occurrance of the character c
in string s, or zero if c isn't in the string.

rindex returns a pointer to the last occurrance of the character c
in string s, or zero if c isn't in the string.

- lib.63-

TOUPPER (C) TO UPPER

NAME
toupper, tolower

SYNOPSIS
toupper(c)

tolower(c)

#include "ctype.h"

_ toupper(c)

_ tolower(c)

DESCRIPTION
toupper converts a lower case character to upper case: if c is a
lower case character, toupper returns its upper case equivalent as
its value, otherwise c is returned

to/ower converts an upper case character to lowr case: if c is an
upper case character to/ower returns its lower case equivalent,
otherwise c is returned

toupper and to/ower do not require the header file ctype.h.

_toupper and _to/ower are macro versions of toupper and
to/ower, respectively. They are defined in ctype.h. The difference
between the two sets of functions is that the macro versions will
sometimes translate non-alphabetic characters, whereas the
function versions don't

- lib.64-

UNGETC (C) UNGETC

NAME
ungetc - push a character back into input stream

SYNOPSIS
#include "stdio.h"

ungetc(c, stream)
FILE *stream;

DESCRIPTION
ungetc pushes the character c back on an input stream. That
character will be returned by the next getc call on that stream.
ungetc returns c as its value.

Only one character of pushback is guaranteed EOF cannot be
pushed back

SEE ALSO
Standard I/0 (0)

DIAGNOSTICS
ungetc returns EOF (-I) if the character can't be pushed back

- lib.65-

UNLINK (C)

NAME
unlink

SYNOPSIS
unlink(name)
char •name;

DESCRIPTION
unlink erases a file.

UNLINK

name is a pointer to a character array containing the name of
the file to be erased

unlink returns 0 if successful.

DIAGNOSTICS
unlink returns -1 if it couldn't erase the file and places a code in
the global integer errno describing the error.

-lib.66-

WRITE (C) WRITE

NAME
write

SYNOPSIS
write(fd,buf,bufsize)
int fd, bufsize; char *buf;

DESCRIPTION
write writes characters to a device or disk which has been
previously opened by a call to open or creal. The characters are
written to the device or file directly from the caller's buffer.

fd is the file descriptor which was returned to the caller when
the device or file was opened

buf is a pointer to the buffer containing the characters to be
written.

bufsize is the number of characters to be written.

If the operation is successful, write returns as its value the
number of characters written.

SEE ALSO
Unbuffered I/0 (0) , open, close, read

DIAGNOSTICS
If the operation is unsuccessful, write returns -1 and places a
code in the global integer errno.

- lib.67-

WRITE (C) WRITE

- lib.68-

STYLE

- style.l -

STYLE Aztec C

Chapter Contents

Style ... style
1. Introduction ... 3
2. Structured Programming .. 7
3. Top-down Programming ... 8
4. Defensive Programming and Debugging 10
5. Things to watch out for .. 15

- style.2-

Aztec C STYLE

Style

This section was written for the programmer who is new to the C
language, to communicate the special character of C and the
programming practices for which it is best suited This material will
ease the new user's entry into C. It gives meaning to the peculiarities
of C syntax, in order to avoid the errors which will otherwise
disappear only with experience.

1. Introduction

what's in it for me?

These are the benefits to be reaped by following the methods
presented here:

* Reduced debugging times;

* Increased program efficiency;

* Reduced software maintenance burden.

The aim of the responsible programmer is to write straightforward
code, which makes his programs more accessible to others. This section
on style is meant to point out which programming habits are
conducive to successful C programs and which are especially prone to
cause trouble.

The many advantages of C can be abused Since C is a terse, subtle
language, it is easy to write code which is unclear. This is contrary to
the "philosophy" of C and other structured programming languages,
according to which the structure of a program should be clearly
defined and easily recognizable.

keep it simple

There are several elements of programming style which make C
easier to use. One of these is simplicity. Simplicity means keep it simple.
You should be able to see exactly what your code will do, so that when
it doesn't you can figure out why.

A little suspicion can also be useful. The particular "problem areas"
which are discussed later in this section are points to check when code
"looks right" but does not work. A small omission can cause many
errors.

learn the C idioms

C becomes more valuable and more flexible with time. Obviously,
elementary problems with syntax will disappear. But more importantly,

- style.3-

STYLE Aztec C

C can be described as "idiomatic." This means that certain expressions
become part of a standard vocabulary used over and over.

For example,

while ((c = getchar()) != EOF)

is readily recognized and written by any C programmer. This is often
used as the beginning of a loop which gets a character at a time from a
source of input. Moreover, the inside set of parentheses, often omitted
by a new C programmer, is rarely forgotten after this construct has
been used a few times.

be flexible in using the library

The standard library contains a choice of functions for performing
the same task. Certain combinations offer advantages, so that they are
used routinely. For instance, the standard library contains a function,
scan/, which can be used to input data of a given format. In this
example, the function "scans" input for a floating point number:

scanf("%f', &flt_num);

There are several disadvantages to this function. An important debit
is that it requires a lot of code. Also, it is not always clear how this
function handles certain strings of input Much time could be spent
researching the behavior of this function. However, the equivalent to
the above is done by the following:

flt_num = atof(gets(inp_buf));

This requires considerably less code, and is somewhat more
straightforward gets puts a line of input into the buffer, "inp buf,"
and atof converts it to a floating point value. There is no question
about what the input function is "looking for" and what it should find

Furthermore, there is greater flexibility in the second method of
getting input For instance, if the user of the program could enter
either a special command ("e" for exit) or a floating point value, the
following is possible:

gets(inp but);
if (inp buf[O] == 'e')

exit(O);
flt_num = atof(inp_buf);

Here, the first character of input is checked for an "e", before the
input is converted to a float

The relative length of the library description of the scan! function
is an indication of the problems that can arise with that and related
functions.

- style.4-

Aztec C STYLE

write readable code

Readability can be greatly enhanced by adhering to what common
sense dictates. For instance, most lines can easily accommodate more
than one statement. Although the compiler will accept statements
which are packed together indiscriminately, the logic behind the code
will be lost. Therefore, it makes sense to write no more than one
statement per line.

In a similar vein, it is desirable to be generous with whitespace. A
blank space should separate the arithmetic and assignment operators
from other symbols, such as variable names. And when parentheses are
nested, dividing them with spaces is not being too prudent. For
example,

if((fp=fopen("filename","r")==NULL))

is not the same as

~ if ((fp = fopen("filename", "r")) ==NULL)

The first line contains a misplaced parenthesis which changes the
meaning of the statement entirely. (A file is opened but the file
pointer will be null.) If the statement was expanded, as in the second
line, the problem could be easily spotted, if not avoided altogther.

use straightforward logical expressions

Conditionals are apt to grow into long expressions. They should be
kept short. Conditionals which extend into the next line should be
divided so that the logic of the statement can be visualized at a glance.
Another solution might be to reconsider the logic of the code itself.

learn the rules for expression evaluation

Keep in mind that the evaluation of an expression depends upon
the order in which the operators are evaluated This is determined
from their relative precedence.

Item 7 in the list of "things to watch out for", below, gives an
example of what may happen when the evaluation of a boolean
expression stops "in the middle". The rule inC is that a boolean will be
evaluated only until the value of the expression can be determined

Item 8 gives a well known example of an "undefined" expression,
one whose value is not strictly determined

In general, if an expression depends upon the order in which it is
evaluated, the results may be dubious. Though the result may be
strictly defined, you must be certain you know what that definition is.

a matter of taste

There are several popular styles of indentation and placement of
the braces enclosing compound statements. Whichever format you

- style.5-

STYLE Aztec C

adopt, it is important to be consistent Indentation is the accepted way
of conveying the intended nesting of program statements to other
programmers. However, the compiler understands only braces. Making
them as visible as possible will help in tracking down nesting errors
later.

However much time is devoted to writing readible code, C is low­
level enough to permit some very peculiar expressions.

!* It is important to insert comments on a regular basis! *I
Comments are especially useful as brief introductions to function

definitions.

In general, moderate observance of these suggestions will lessen the
number of "tricks" C will play on you-- even after you have mastered
its syntax.

- style.6-

Aztec C STYLE

2. Structured Programming

"Structured programming" is an attempt to encourage programming
characterized by method and clarity. It stems from the theory that any
programming task can be broken into simpler components. The three
basic parts are statements, loops, and conditionals. In C, these parts are,
respectively, anything enclosed by braces or ending with a semicolon;
for, while and do-while; if-else.

modularity and block structure

Central to structured programming is the concept of modularity. In
one sense, any source file compiled by itself is a module. However, the
term is used here with a more specific meaning. In this context,
modularity refers to the independence or isolation of one routine from
another. For example, a routine such as main() can call a function to
do a given task even though it does not know how the task is
accomplished or what intermediate values are used to reach the final
result

Sections of a program set aside by braces are called "blocks". The
"privacy" of C's block structure ensures that the variables of each block
are not inadvertently shared by other blocks. Any left brace ({) signals
the beginning of a block, such as the body of a function or a for loop.
Since each block can have its own set of variables, a left brace marks
an opportunity to declare a temporary variable.

A function in C is a special block because it is called and is passed
control of execution. A function is called, executes and returns.
Essentially, a C program is just such a routine, namely, main.

A function call represents a task to be accomplished Program
statements which might otherwise appear as several obscure lines can
be set aside in a function which satisfies a desired purpose. For
instance, getchar is used to get a single character from standard input.

When a section of code must be modified, it is simpler to replace a
single modular block than it is to delete a section of an unstructured
program whose boundaries may be unclear at best In general, the
more precisely a block of program is defined, the more easily it can be
changed ·

- style.7-

STYLE Aztec C

3. ToJrdown Programming

"Top-down" programming is one method that takes advantage of
structured programming features like those discussed above. It is a
method of designing, writing, and testing a program from the most
general function (i.e., (main()) to the most specific functions (such as
getchar()).

All C programs begin with a function called main(). main() can be
thought of as a supervisor or manager which calls upon other functions
to perform specific tasks, doing little of the work itself. If the overall
goal of the program can be considered in four parts (for instance,
input, processing, error checking and output), then main() should call
at least four other functions.

step one

The first step in the design of a program is to identify what is to be
done and how it can be accomplished in a "programmable" way. The
main routine should be greatly simplified It needs to call a function to
perform the crucial steps in the program. For example, it may call a
function, init(), which takes care of all necessary startup initializations.
At this point, the programmer does not even need to be certain of all
the initializations that will take place in init().

All functions consist of three parts: a parameter list, body, and
return value. The design of a function must focus on each of these
three elements.

During this first stage of design, each function can be considered a
black box. We are concerned only with what goes in and what comes
out, not with what goes on inside.

Do not allow yourself to be distracted by the details of the
implementation at this point Flowcharts, pseudocode, decision tables
and the like are useful at this stage of the implementation.

A detailed list of the data which is passed back and forth between
functions is important and should not be neglected The interface
between functions is crucial.

Although all functions are written with a purpose in mind, it is
easy to unwittingly merge two tasks into one. Sometimes, this may be
done in the interests of producing a compact and efficient program
function. However, the usual result is a bulky, unmanageable function.
If a function grows very large or if its logic becomes difficult to
comprehend, it should be reduced by introducing additional function
calls.

step two

There comes a time when a program must pass from the design
stage into the coding stage. You may find the top-down approach to

- style.S-

Aztec C STYLE

coding too restrictive. According to this scheme, the smallest and most
specific functions would be coded last It is our nature to tackle the
most daunting problems first, which usually means coding the low­
level functions.

Whereas the top-down approach is the preferred method for
designing software, the bottom-up approach is often the most practical
method for writing software. Given a good design, either method of
implementation should produce equally good results.

One asset of top-down writing is the ability to provide immediate
tests on upper level routines. Unresolved function calls can be satisfied
by "dummy" functions which return a range of test values. When new
functions are added, they can operate in an environment that has
already been tested

C functions are most effective when they are as mutually
independent as is possible. This independence is encouraged by the
fact that there is normally only one way into and one way out of a
function: by calling it with specific arguments and returning a
meaningful value. Any function can be modified or replaced so long as
its entry and exit points are consistent with the calling function.

- style.9-

STYLE Aztec C

4. Defensive Programming and Debugging

"Defensive programming" obeys the same edict as defensive
driving: trust no one to do what you expect There are two sides to
this rule of thumb. Defend against both the possibility of bad data or
misuse of the program by the user, and the possibility of bad data
generated by bad code.

Pointers, for example, are a prime source of variables gone astray.
Even though the "theory" of pointers may be well understood, using
them in new ways (or for the first time) requires careful consideration
at each step. Pointers present the fewest problems when they appear in
familiar settings.

faced with the unknown

When trying something new, first write a few test programs to
make sure the syntax you are using is correct For example, consider a
buffer, str _buf, filled with null-terminated strings. Suppose we want to
print the string which begins at offset begin in the buffer. Is this the
way to do it?

printf("%s", str_buflbegin]);

A little investigation shows that str buflbegin] is a character, not a
pointer to a string, which is what is called for. The correct statement is

printf("%s", str_buf + begin);

This kind of error may not be obvious when you first see it. There
are other topics which can be troublesome at first exposure. The
promotion of data types within expressions is an example. Even if you
are sure how a new construct behaves, it never hurts to doublecheck
with a test program.

Certain programming habits will ease the bite of syntax. Foremost
among these is simplicity of style. Top-down programming is aimed at
producing brief and consequently simple functions. This simplicity
should not disappear when the design is coded

Code should appear as "idiomatic" as possible. Pointers can again
provide an example: it is a fact of C syntax that arrays and pointers
are one and the same. That is,

array(offset]

is the same as

*(array + offset)

The only difference is that an array name is not an lvalue; it is
fixed But mixing the two ways of referencing an object can cause
confusion, such as in the last example. Choosing a certain idiom,
which is known to behave a certain way, can help avoid many errors in
usage.

- style.lO-

Aztec C STYLE

when bu~ strike

The assumption must be that you will have to return to the source
code to make changes, probably due to what is called a bug. Bugs are
characterized by their persistence and their tendency to multiply
rapidly.

Errors can occur at either compile-time or run-time. Compile-time
errors are somewhat easier to resolve since they are usually errors in
syntax which the compiler will point out.

from the compiler

If the compiler does pick up an error in the source code, it will
send an error code to the screen and try to specify where the error
occurred There are several peculiarities about error reporting which
should be brought up right away.

The most noticeable of these peculiarities is the number of spurious
errors which the compiler may report. This interval of inconsistency is
referred to as the compiler's recovery. The safest way to deal with an
unusually long list of errors is to correct the first error and then
recompile before proceeding.

The compiler will specify where it "noticed" something was wrong.
This does not necessarily indicate where you must make a change in
the code. The error number is a more accurate clue, since it shows
what the compiler was looking for when the error occurred

if this ever happens to you

A common example of this is error 69: "missing semicolon." This
error code will be put out if the compiler is expecting a semicolon
when it finds some other character. Since this error most often occurs
at the end of a line, it may not be reported until the first character of
the following line-- recall that whitespace, such as a newline character,
is ignored

Such an error can be especially treacherous in certain situations.
For example, a missing semicolon at the end of a #include'd file may
be reported when the compiler returns to read input in the original
file.

In general, it is helpful to look at a syntax error from the
compiler's point of view.

Consider this error:

- style.ll -

STYLE

struct structag {
char c;
inti;

}

int j;

Aztec C

This should generate an error 16: "data type conflict". The arrow in the
error message should show that the error was detected right after the
"int'' in the declaration of j. This means that the error has to do with
something before that line, since there is nothing illegal about the int
keyword

By inspection, we may see that the semicolon is missing from the
preceding line. If this fact escapes our notice, we still know that error
16 means this: the compiler found a declaration of the form

[data type] [data type] [symbol name]

where the two data types were incompatible. So while shortint is a
good data type, double int is not A small intuitive leap leads us to
assume that the compiler has read our source as a kind of "struct int"
declaration; struct is the only keyword preceding the int which could
have caused this error. Since the compiler is reading the two
declarations as a single statement, we must be missing a delimiter.

run-time errors

It takes a bit more ingenuity to locate errors which occur at run­
time. In numerical calculations, only the most anomalous results will
draw attention to themselves. Other bugs will generate output which
will appear to have come from an entirely different program.

A bug is most useful when it is repeatable. Bugs which show up
only "sometimes" are merely vexing. They can be caused by a
corrupted disk file or a bad command from the user.

When an error can be consistently produced, its source can be more
easily located The nature of an error is a good clue as to its source.
Much of your time and sanity will be preserved by setting aside a few
minutes to reflect upon the problem.

Which modules are involved in the computation or process? Many
possibilities can be eliminated from the start, such as pieces. of code
which are unrelated to the error.

The first goal is to determine, from a number of possibilities,
which module might be the source of the bug.

checking input data

Input to the program can be checked at a low cost. Error checking
of this sort should be included on a "routine" basis. For instance, "if
((fp=fopen("file","r"))==NULL)" should be reflex when a file is

- style.12 -

Aztec C STYLE

opened Any useful error handling can follow in the body of the if.
It is easy to check your data when you first get your hands on it. If

an error occurs after that, you have a bug in your program.

printf it

It is useful to know where the data goes awry. One brute force way
of tracking down the bug is to insert print! statements wherever the
data is referenced When an unexpected value comes up, a single
module can be chosen for further investigation.

The printf search will be most effective when done with more
refinement. Choose a suspect module. There are only two keys points
to check the entry and return of the function. print! the data in
question just as soon as the function is entered If the values are
already incorrect, then you will want to make sure the correct data was
passed in the function call.

If an incorrect value is returned, then the search is confined to the
guilty function. Even if the function returns a good value, you may
want to make sure it is handled correctly by the calling function.

If everything seems to be working, jump to the next tricky module
and perform another check. When you find a bad result, you will still
have to backtrack to discover precisely where the data was spoiled

function calls

Be aware that data can be garbled in a funtion call. Function
parameters must be declared when they are not two byte integers. For
instance, if a function is called:

fseek(fp, 0, 0);

in order to "seek" to the beginning of a file, but the function is defined
this way:

fseek(fp, offset, origin)
FILE *fp;
long offset;
int origin;

there will be unfortunate consequences.

The second parameter is expected to be a long integer (four bytes),
but what is being passed is a short integer (two bytes). In a function
call, the arguments are just being pushed onto the stack; when the
function is entered, they are pulled off again. In the example, two
bytes are being pushed on, but four bytes (whatever four bytes are
there) are being pulled off.

The solution is just to make the second parameter a long, with a
suffix (OL) or by the cast operator (as in (long)i).

- style.13-

STYLE Aztec C

A similar problem occurs when a non-integer return value is not
declared in the calling function. For example, if sqrt is being called, it
must be declared as returning a double:

double sqrt();

This method of debugging demonstrates the usefulness of having a
solid design before a function is coded If you know what should be
going into a function and what should be coming out, the process of
checking that data is made much simpler.

found it

When the guilty function is isolated, the difficulty of finding the
bug is proportional to the simplicity of the code. However, the search
can continue in a similar way. You should have a good notion of the
purpose of each block, such as a loop. By inserting a print/ in a loop,
you can observe the effect of each pass on the data

printfs can also point out which blocks are actually being executed
"Falling through" a test, such as an if or a switch, can be a subtle source
of problems. Conditionals should not leave cases untested An else, or a
default in a switch, can rescue the code from unexpected input

And if you are uncertain how a piece of code will work, it is
usually worthwhile to set up small test programs and observe what
happens. This is instructional and may reveal a bug or two.

- style.l4-

Aztec C STYLE

5. Thin~ to Watch Out for

Some errors arise again and again. Not all of them go away with
experience. The following list will give you an idea of the kinds of
things that can go wrong.

• missing semicolon or brace

The compiler will tell you when a missing semicolon or brace has
introduced bad syntax into the code. However, often such an error will
affect only the logical structure of the program; the code may compile
and even execute. When this error is not revealed by inspection, it is
usually brought out by a test print/ which is executed too often or not
enough. See compiler error 69.

• assignment (=) vs comparison (--)

Since variables are assigned values more often than they are tested
for equality, the former operator was given the single keystroke: =.
Notice that all the comparison tests with equality are two characters:
<=, >= and ==.
• misplaced semicolon

When typing in a program, keep in mind that all source lines do not
automatically end with a semicolon. Control lines are especially
susceptible to an unwanted semicolon:

for (i=O; i<lOO; i++);
printf("%d",i);

This example prints the single number 100.

• division(/) vs escape sequence(\)

C definitely distinguishes between these characters. The division
sign resides below the question mark on a standard console; the
backslash is generally harder to find

• character constant vs character string

Character constants are actually integers equal to the ASCII values
of the respective character. A character string is a series of characters
terminated by a null character (\0). The appropriate delimiter is the
single quote and double quote, respectively.

• uninitialized variable

At some point, all variables must be given values before they are
used The compiler will set global and static variables to zero, but
automatic variables are guaranteed to contain garbage every time they
are created

- style.15 -

STYLE Aztec C

* evaluation of expressions

For most operations in C, the order of evaluation is rigidly defined;
thus, many expressions can be written without lots of parentheses.

However, the order in which unparenthesized expressions are
evaluated are not always what you would expect; therefore, it's usually
a good idea to use parentheses liberally in expressions where there may
be doubt about the order of evaluation (in your mind or in the mind
of someone who may later read your program).

For example, the result of the following example is 6:

int a = 2, b = 3, c = 4, d;
d=a+b/a*c;

The above expression is equivalent to the parenthesized expression d =
a + ((b 1 a) • c);. You should probably use some parentheses in this
expression, to make its effect clear to yourself and to others.

Consider this example:

if ((c = 0) I (c = I))
printf("%d", c);

"1" will be printed; since the first half of the conditional evaluates
to zero, the second half must be also evaluated But in this example:

if ((c = 0) && (c = I))

' printf("%d", c);

a "0" is printed Since the first half evaluates to zero, the value of the
conditional must be zero, or false, and evaluation stops. This is a
property of the logical operators.

• undefined order of evaluation

Unfortunately, not all operators were given a complete set of
instructions as to how they should be evaluated A good example is the
increment (or decrement) operator. For instance, the following is
undefined:

i = ++i + --i/++i- i++;

How such an expression is evaluated by a particular implementation is
called a "side effect." In general, side effects are to be avoided

• evaluation of boolean expressions

Ands, ors and nots invite the programmer to write long
conditionals whose very purpose is lost in the code. Booleans should be
brief and to the point. Also, the bitwise logical operators must be fully
parenthesized The table in sections 2.12 and 18.1 of The C
Programming Language, by Kernighan and Ritchie, shows their
precedence in relation to other operators.

- style.16-

Aztec C STYLE

Here is an extreme example of how a lengthy boolean can be
reduced:

if ((c = getchar()) != EOF && c >='a' && c <= 'z' &&
(c = getchar()) >= '1' && c <= '9')

printf("good input\n");

if ((c = getchar()) != EOF)
if (c >='a' && c <= 'z')

if ((c = getchar()) >= '0' && c <= '9')
printf("good input\n");

* badly formed comments

The theory of comment syntax is simply that everything occurring
between a left I* and a right *I is ignored by the compiler.
Nonetheless, a missing *I should not be overlooked as a possible error.

Note that comments cannot be nested, that is

I* I* this will cause an error *I *I
And this could happen to you too:

I* the rest of this file is ignored until another comment !*
* nesting error

Remember that nesting is determined by braces and not by
indentations in the text of the source. Nested if statements merit
particular care since they are often paired with an else.

* usage of else

Every else must pair up with an if. When an else has inexplicably
remained unpaired, the cause is often related to the first error in this
list.

* falling through the cases in a switch

To maintain the most control over the cases in a switch statement, it
is advisable to end each case with a break, including the last case in the
switch.

* strange loops

The behavior of loops can be explored by inserting print!
statements in the body of the loop. Obviously, this will indicate if the
loop has even been entered at all in course of a run. A counter will
show just how many times the loop was executed; a small slip-up will
cause a loop to be run through once too often or seldom. The
condition for leaving the loop should be doublechecked for accuracy.

- style.17-

STYLE Aztec C

* use of strings

All strings must be terminated by a null character in memory.
Thus, the string, "hello", will occupy a six-element array; the sixth
element is ' '. This convention is essential when passing a string to a
standard library function. The compiler will append the null character
to string constants automatically.

* pointer vs object of a pointer

The greatest difficulty in using pointers is being sure of what is
needed and what is being used Functions which take a pointer
argument require an address in memory. The best way to ensure that
the correct value is being passed is to keep track of what is being
pointed to by which pointer.

* array subscripting

The first element in a C array has a subscript of zero. The array
name without a subscript is actually a pointer to this element.
Obviously, many problems can develop from an incorrect subscript.
The most damaging can be subscripting out of bounds, since this will
access memory above the array and overwrite any data there. If array
elements or data stored with arrays are being lost, this error is a good
candidate.

* function interface

During the design stage, the components of a program should be
associated with functions. It is important that the data which is passed
among or shared by these functions be explicitly defined in the
preliminary design of the program. This will greatly facilitate the
coding of the program since the interface between functions must be
precise in several respects.

First of all, if the parameters of a function are established, a call
can be made without the reservation that it will be changed later.
There is less chance that the arguments will be of the wrong type or
specified in the wrong order.

A function is given only a private copy of the variables it is passed
This is a good reason to decide while designing the program how
functions should access the data they require. You will be able to detail
the arguments to be passed in a function call, the global data which the
function will alter, the value which the function will return and what
declarations will be appropriate-- all without concern for how the
function will be coded

Argument declarations should be a fairly simple matter once these
things are known. Note that this declaration list must stand before the
left brace of the function body.

- style.18-

Aztec C STYLE

The type of the function is the same as the type of the value it
returns. Functions must be declared just like any variable. And just
like variables, functions will default to type int, that is, the compiler
will assume that a function returns an integer if you do not tell it
otherwise with a declaration. Thus if function f calls function g which
returns a variable of type double, the following declaration is needed:

function f()
{

double g(), bigfloat;

g(bigfloat);
}
double g(arg)
double arg;
{

return(arg);
}

• be sure of what a function returns

You will probably know very well what is returned by a function
you have written yourself. But care should be taken when using
functions coded by someone else. This is especially true of the standard
library functions. Most of the supplied library functions will return an
int or a char pointer where you might expect a char. For instance,
getchar() returns an int, not a char. The functions supplied by Manx
adhere to the UNIX model in all but a few cases.

Of course, the above applies to a function's arguments as well

• shared data

Variables that are declared globally can be accessed by all functions
in the file. This is not a very safe way to pass data to functions since
once a global variable is altered, there is no returning it to its former
state without an elaborate method of saving data Moreover, global data
must be carefully managed; a function may process the wrong variable
and consequently inhibit any other function which depends on that
data

Since C provides for and even encourages private data, this
definitely should not be a common bug.

- style.19-

STYLE Aztec C

- style.20-

COMPILER ERROR MESSAGES

- err.l -

Compiler Error Messages Aztec C

Chapter Contents

Compiler Error Codes ... err
1. Summary .. 4
2. Explanations .. 7
3. Fatal Error Messages ... 35

- err.2-

Aztec C Compiler Error Messages

Compiler Error Messages

This chapter discusses error messages that can be generated by the
compiler. It is divided into three sections: the first summarizes the
messages, the second explains them, and the third discusses fatal
compiler error messsages.

- err.3-

Compiler Error Messages

1. Summary of error codes

No. Interpretation

1: bad digit in octal constant
2: string space exhausted
3: unterminated string
4: internal error
5: illegal type for function
6: inappropriate arguments
7: bad declaration syntax
8: syntax error in typecast
9: array dimension must be constant

10: array size must be positive integer
11: data type too complex
12: illegal pointer reference
13: unimplemented type
14: internal
15: internal
16: data type conflict
1 7: unsupported data type
18: data type conflict
19: obsolete
20: structure redeclaration
21: missing }
22: syntax error in structure declaration
23: incorrect type for library function (Apprentice C only)

obsolete (other Aztec C compilers)
24: need right parenthesis or comma in arg list
25: structure member name expected here
26: must be structure/union member
27: illegal typecast
28: incompatible structures
29: illegal use of structure
30: missing : in ? conditional expression
31: call of non-function
32: illegal pointer calculation
33: illegal type
34: undefined symbol
35: typedef not allowed here
36: no more expression space
37: invalid expression for unary operator
38: no auto. aggregate initialization allowed
39: obsolete
40: internal
41: initializer not a constant
42: too many initializers

- err.4 -

Aztec C

Aztec C

43: initialization of undefined structure
44: obsolete
45: bad declaration syntax
46: missing closing brace
4 7: open failure on include file
48: illegal symbol name
49: multiply defined symbol
50: missing bracket
51: lvalue required
52: obsolete
53: multiply defined label
54: too many labels
55: missing quote
56: missing apostrophe
57: line too long
58: illegal # encountered
59: macro too long
60: obsolete

Compiler Error Messages

61: reference of member of undefined structure
62: function body must be compound statement
63: undefined label
64: inappropriate arguments
65: illegal argument name
66: expected comma
67: invalid else
68: syntax error
69: missing semicolon
70: goto needs a label
71: statement syntax error in do-while
72: 'for' syntax error: missing first semicolon
73: 'for' syntax error: missing second semicolon
74: case value must be an integer constant
7 5: missing colon on case
76: too many cases in switch
77: case outside of switch
78: missing colon on default
79: duplicate default
80: default outside of switch
81: break/continue error
82: illegal character
83: too many nested includes
84: too many array dimensions
85: not an argument
86: null dimension in array
87: invalid character constant
88: not a structure
89: invalid use of register storage class
90: symbol redeclared

- err.5-

Compiler Error Messages Aztec C

91: illegal use of floating point type
92: illegal type conversion
93: illegal expression type for switch
94: invalid identifier in macro definition
95: macro needs argument list
96: missing argument to macro
97: obsolete
98: not enough arguments in macro reference
99: internal
100: internal
10 I: missing close parenthesis on macro reference
102: macro arguments too long
103: #else with no #if
104: #endif with no #if
105: #endasm with no #asm
106: #asm within #asm block
107: missing #endif
I 08: missing #endasm
109: #if value must be integer constant
110: invalid use of : operator
Ill: invalid use of void expression
112: invalid use function pointer
113: duplicate case in switch
114: macro redefined
115: keyword redefined
116: field width must be> 0
117: invalid 0 length field
118: field is too wide
119: field not allowed here
120: invalid type for field
121: ptr to int conversion
122: ptr & int not same size
123: function ptr & ptr not same size
124: invalid ptr/ptr assignment
125: too many subscripts or indirection on integer

Error codes between 116 and 125 will not occur on Aztec C
compilers whose version number is less than 3.

Error codes greater than 200 will occur only if there's something
wrong with the compiler. If you get such an error, please send us the
program that generated the error.

- err.6-

Aztec C Compiler Error Messages

2. Explanations

1: bad digit in octal constant

The only numerals permitted in the base 8 (octal) counting system
are zero through seven. In order to distinguish between octal,
hexadecimal, and decimal constants, octal constants are preceded by a
zero. Any number beginning with a zero must not contain a digit
greater than seven. Octal constants look like this: 01, 027, 003.
Hexadecimal constants begin with Ox (e.g., Oxl, OxAAO, OxFFF).

2: string space exhausted

The compiler maintains an internal table of the strings appearing in
the source code. Since this table has a finite size, it may overflow
during compilation and cause this error code. The table default size is
about one or two thousand characters depending on the operating
system. The size can be changed using the compiler option -Z.
Through simple guesswork, it is possible to arrive at a table size
sufficient for compiling your program.

3: unterminated string

All strings must begin and end with double quotes ("). This message
indicates that a double quote has remained unpaired

4: internal error

This error message should not occur. It is a check on the internal
workings of the compiler and is not known to be caused by any
particular piece of code. However, if this error code appears, please
bring it to the attention of MANX It could be a bug in the compiler.
The release documentation enclosed with the product contains further
information.

5: illegal type for function

The type of a function refers to the type of the value which it
returns. Functions return an int by default unless they are declared
otherwise. However, functions are not allowed to return aggregates
(arrays or structures). An attempt to write a function such as struct sam
june() will generate this error code. The legal function types are char,
int, float, double, unsigned, long, void and a pointer to any type
(including structures).

6: error in argument declaration

The declaration list for the formal parameters of a function stands
immediately before the left brace of the function body, as shown
below. Undeclared arguments default to int, though it is usually better
practice to declare everything. Naturally, this declaration list may be
empty, whether or not the function takes any arguments at all.

- err.7-

Compiler Error Messages Aztec C

No other inappropriate symbols should appear before the left
(open) brace.

badfunction(argl, arg2)
shrt arg I; I* misspelled or invalid keyword *I
double arg 2;
{ I* function body *I
}

goodfunction(argl,arg2)
float argl;
int arg2; I* this line is not required *I
{ I* function body *I
}

7: bad declaration syntax

A common cause of this error is the absence of a semicolon at the
end of a declaration. The compiler expects a semicolon to follow a
variable declaration unless commas appear between variable names
in multiple declarations.

int i, j; I* correct *I
char c d; I* error 7 *I
char *sl, *s2
float k; I* error 7 detected here *I

Sometimes the compiler may not detect the error until the next
program line. A missing semicolon at the end of a #include'd file will
be detected back in the file being compiled or in another #include file.
This is a good example of why it is important to examine the context
of the error rather than to rely solely on the information provided by
the compiler error message(s).

8: syntax error in type cast

The syntax of the cast operator must be carefully observed A
common error is to omit a parenthesis:

i = 3 * (int number);
i = 3 * ((int)number);

9: array dimension must be constant

I* incorrect usage *I
I* correct usage *I

The dimension given an array must be a constant of type char, int,
or unsigned. This value is specified in the declaration of the array. See
error 10.

10: array size must be positive integer

The dimension of an array is required to be greater than zero. A
dimension less than or equal to zero becomes 1 by default. As can be
seen from the following example, specifying a dimension of zero is not
the same as leaving the brackets empty.

- err.S-

Aztec C

char badarray[O];
extern char goodarray[];

Compiler Error Messages

I* meaningless *I
I* good *I

Empty brackets are used when declaring an array that has been
defined (given a size and storage in memory) somewhere else (that is,
outside the current function or file). In the above example, goodarray
is external. Function arguments should be declared with a null
dimension:

func(sl,s2)
char sl[], s2[];
{

}

11: data type too complex

This message is best explained by example:

char *******foo;

The form of this declaration implies six pointers-to-pointers. The
seventh asterisk indicates a pointer to a char. The compiler is unable to
keep track of so many "levels". Removing just one of the asterisks will
cure the error; all that is being declared in any case is a single two-byte
pointer. However it is to be hoped that such a construct will never be
needed

12: illegal pointer reference

The type of a pointer must be either int or unsigned. This is why
you might get away with not declaring pointer arguments in functions
like fopen which return a pointer; they default to int. When this error
is generated, an expression used as a pointer is of an invalid type:

char c;
int var;
int varaddress;
varaddress = &var;
*(varaddress) = 'c';
*(expression) = I 0;

*c = 'c';

13: internal [see error 4]

14: internal [see error 4]

15: storage class conflict

I* any variable *I

!* valid since addresses *I
I* can fit in an int *I
I* in general, expression
must be an int or unsigned *I
I* error 12 *I

Only automatic variables and function parameters can be specified
as register.

This error can be caused by declaring a static register variable. While
structure members cannot be given a storage class at all, function

- err.9-

Compiler Error Messages Aztec C

arguments can be specified only as register.

A register int i declaration is not allowed outside a function--it will
generate error 89 (see below).

16: data type conflict

The basic data types are not numerous, and there are not many
ways to use them in declarations. The possibilities are listed below.

This error code indicates that two incompatible data types were
used in conjunction with one another. For example, while it is valid to
say long int i, and unsigned int j, it is meaningless to use double int k or
float char c. In this respect, the compiler checks to make sure that int,
char, float and double are used correctly.

I data type
I char
I int I unsigned/unsigned int
1 short
1 long/long integer
1 float
I long float/ double

17: Unsupported data type

interpretation
character
integer
unsigned integer
integer
long integer
floating point number
double precision float

size(bytes)
1
2
2
2
4
4
8

This message occurs only when data types are used which are
supported by the extended C language, such as the enum data type.

18: data type conflict

This message indicates an error in the use of the long or unsigned
data type. long can be applied as a qualifier to int and float. unsigned
can be used with char, int and long.

long i;
long float d;
unsigned u;
unsigned char c;
unsigned long 1;
unsigned float f;

19: obsolete

!*a long int */
!* a double *I
!* an unsigned int *I

!*error 18 *I

Error codes interpreted as obsolete do not occur in the current
version of the compiler. Some simply no longer apply due to the
increased adaptability of the compiler. Other error codes have been
translated into full messages sent directly to the screen. If you are
using an older version of the product and have need of these codes,
please contact Manx for information.

- err.10-

Aztec C Compiler Error Messages

20: structure redeclaration

The compiler is able to tell you if a structure has already been
defined This message informs you that you have tried to redefine a
structure.

21: missing }

The compiler expects to find a comma after each member in the
list of fields for a structure initialization. After the last field, it expects
a right (close) brace.

For example, the following program fragment will generate error
21, since the initialization of the structure named 'harry' doesn't have
a closing brace:

struct sam {
int bone;
char license[10];

} harry= {
I,
"23-4-1984";

22: syntax error in structure declaration

The compiler was unable to find the left (open) brace which follows
the tag in a structure declaration. In the example for error 21, "sam" is
the structure tag. A left brace must follow the keyword struct if no
structure tag is specified

23: inoorrect type for library function (Apprentice Conly)

For Apprentice C, this error means that your program has either
explicitly or implicitly incorrectly declared the type of a function
that's in the run-time system. For example, you will get this error if
you call the run-time system function sqrt without declaring that it
returns a double.

23: obsolete (Other Aztec C Compilers)

For Compilers other than Apprentice C, this error should not
occur.

24: need right parenthesis or comma

The right parenthesis is missing from a function call. Every
function call must have an argument list enclosed by parentheses even
if the list is empty. A right parenthesis is required to terminate the
argument list

In the following example, the parentheses indicate that getchar is a
function rather than a variable.

getchar();

- err.ll -

Compiler Error Messages Aztec C

This is the equivalent of

CALL getchar

which might be found in a more explicit programming language. In
general, a function is recognized as a name followed by a left
parenthesis.

With the exception of reserved words, any name can be made a
function by the addition of parentheses. However, if a previously
defined variable is used as a function name, a compilation error will
result.

Moreover, a comma must separate each argument in the list. For
example, error 24 will also result from this statement

funccall(argl, arg2 arg3);

25: structure member name expected here

The symbol name following the dot operator or the arrow must be
valid A valid name is a string of alphanumerics and underscores. It
must begin with an alphabetic (a letter of the alphabet or an
underscore). In the last line of the following example, "(salary)" is not
valid because '(' is not an alphanumeric.

empptr = &anderson;
empptr->salary = 12000;
(*empptr).salary = 12000;
anderson.sa1ary = 12000;
empptr = &anderson.;
empptr-> = 12000;
anderson.(salary) = 12000;

26: must be structure/union member

!* these three lines *I
!*are*/
!* equivalent *I
I* error 25 *I
/* error 25 *I
!* error 25 *I

The defined structure or union has no member with the name
specified If the -S option was specified, no previously defined
structure or union has such a member either.

Structure members cannot be created at will during a program. Like
other variables, they must be fully defined in the appropriate
declaration list. Unions provide for variably typed fields, but the full
range of desired types must be anticipated in the union declaration.

27: illegal type cast

It is not possible to cast an expression to a function, a structure, or
an array. This message may also appear if a syntax error occurs in the
expression to be cast.

structure sam { ... } thorn;
thorn = (struct sam)(expression); /* error 27 *I

- err.12-

Aztec C Compiler Error Messages

28: incompatible structures

C permits the assignment of one structure to another. The compiler
will ensure that the two structures are identical. Both structures must
have the same structure tag. For example:

struct sam harry;
struct sam thorn;

harry = thorn;

29: illegal use of structure

Not all operators can accept a structure as an operand Also,
structures cannot be passed as arguments. However, it is possible to
take the address of a structure using the ampersand (&), to assign
structures, and to reference a member of a structure using the dot
operator.

30: missing: in? conditional expression

The standard syntax for this operator is:

expression ? statement! : statement2

It is not desirable to use ?: for extremely complicated expressions; its
purpose lies in brevity and clarity.

31: call of non-function

The following represents a function call:

symbol(arg1, arg2, ... , argo);

where "symbol" is not a reserved word and the expression stands in the
body of a function. Error 31, in reference to the expression above,
indicates that "symbol" has been previously declared as something
other than a function.

A missing operator may also cause this error:

a(b +c); /*error 31 */
a* (b + c); /*intended* I

The missing '*' makes the compiler view "a()" as a function call.

32: illegal pointer calculation

Pointers may be involved in three calculations. An integral value
can be added to or subtracted from a pointer. Pointers to objects of the
same type can be subtracted from one another and compared to one
another. (For a formal definition, see Kernighan and Ritchie pp. 188-
189.) Since the comparison and subtraction of two pointers is
dependent upon pointer size, both operands must be the same size.

- err.13-

Compiler Error Messages Aztec C

33: illegal type

The unary minus (-) and bit complement (-) operators cannot be
applied to structures, pointers, arrays and functions. There is no
reasonable interpretation for the following:

int function();
char array(l2];
struct sam { . .. } harry~
a= -array~ I*? *I
b =-harry~
c = -function & WRONG;

34: undefined symbol

The compiler will recognize only reserved words and names which
have been previously defined This error is often the result of a
typographical error or due to an omitted declaration.

35: typedef not allowed here

Symbols which have been defined as types are not allowed within
expressions. The exception to this rule is the use of sizeo f(ex pression)
and the cast operator. Compare the accompanying examples:

struct sam {
inti;

} harry;
typedef double bigfloat;
typedef struct sam foo;

j = 4 * bigfloat f~
k = &foo~
x = sizeof(bigfloat);
y = sizeof(foo)~

I* error 35 • I
!* error 35 • I

I* good *I
The compiler will detect two errors in this code. In the first

assignment, a typecast was probably intended; compare error 8. The
second assignment makes reference to the address of a structure type.
However, the structure type is just a template for instances of the
structure (such as "harry"). It is no more meaningful to take the
address of a structure type than any other data type, as in &int.

36: no more expression space

This message indicates that the expression table is not large enough
for the compiler to process the source code. It is necessary to
recompile the file using the -E option to increase the number of
available entries in the expression table. See the description of the
compiler in the manual.

- err.14-

Aztec C Compiler Error Messages

37: invalid expression

This error occurs in the evaluation of an expression containing a
unary operator. The operand either is not given or is itself an invalid
expression.

Unary operators take just one operand; they work on just one
variable or expression. If the operand is not simply missing, as in the
example below, it fails to evaluate to anything its operator can accept.
The unary operators are logical not (!), bit complement (-), increment
(++), decrement (--), unary minus (-), typecast, pointer-to (*),
address-of(&), and sizeof.

if(!) ;

38: no auto. aggregate initialization

It is not permitted to initialize automatic arrays and structures.
Static and external aggregates may be initialized, but by default their
members are set to zero.

char array(5] = {'a', 'b', 'c', 'd' };
function()
{

}

static struct sam {
int bone;
char license(10];

} harry= {
1,
"123-4-1984"

};
char autoarray(2] = { •r, 'g' }; /*no good*!
extern char array[];

There are three variables in the above example, only two of which
are correctly initialized The variable "array" may be initialized
because it is external. Its first four members will be given the
characters as shown. The fifth member will be set to zero.

The structure "harry" is static and may be initialized Notice that
"license" cannot be initialized without first giving a value to "bone".
There are no provisions in C for setting a value in the middle of an
aggregate.

The variable "autoarray" is an automatic array. That is, it is local to
a function and it is not declared to be static. Automatic variables
reappear automatically every time a function is called, and they are
guaranteed to contain garbage. Automatic aggregates cannot be
initialized

- err.lS-

Compiler Error Messages

39: obsolete [see error 19]

40: internal [see error 4]

41: initializer not a constant

Aztec C

In certain initializations, the expression to the right of the equals
sign (=) must be a constant. Indeed, only automatic and register
variables may be initialized to an expression. Such initializations are
meant as a convenient shorthand to eliminate assignment statements.
The initialization of statics and globals actually occurs at link-time, and
not at run-time.

{
inti= 3;
static int j = (2 + i); !* illegal *I

}

42: too many initializers

There were more values found in an initialization than array or
structure members exist to hold them. Either too many values were
specified or there should have been more members declared in the
aggregate definition.

In the initialization of a complex data structure, it is possible to
enclose the initializer in a single set of braces and simply list the
members, separated by commas. If more than one set of braces is used,
as in the case of a structure within a structure, the initializer must be
entirely braced

struct {
struct {

char array[];
} substruct;

} superstruct =

version 1:

version 2:

{

};

{

"abcdefghij"

{

}
{ 'a' 'b' 'c' 't"' 'J"} ' ' , ... , '

};

In version 1, the initializers are copied byte-for-byte onto the
structure, superstrnct.

- err.16 -

Aztec C Compiler Error Messages

Another likely source of this error is in the initialization of arrays
with strings, as in:

char array[I 0] = "abcdefghij";

This will generate error 42 because the string constant on the right
is null-terminated The null terminator (' ' or OxOO) brings the size of
the initializer to II bytes, which overflows the ten-byte array.

43: undefined structure initialization

An attempt has been made to assign values to a structure which has
not yet been defined

struct sam { ... };
struct dog sam = { I, 2, 3}; /* error 43 *I

44: oho>olete [see error 19]

45: bad declaration syntax

This error code is an all purpose means for catching errors in
declaration statements. It indicates that the compiler is unable to
interpret a word in an external declaration list.

46: missing dosing brace

All the braces did not pair up at the end of compilation. If all the
preceding code is correct, this message indicates that the final closing
brace to a function is missing. However, it can also result from a brace
missing from an inner block.

Keep in mind that the compiler accepts or rejects code on the basis
of syntax, so that an error is detected only when the rules of grammar
are violated This can be misleading. For example, the program below
will generate error 46 at the end even though the human error
probably occurred in the while loop several lines earlier.

As the code appears here, every statement after the left brace in
line 6 belongs to the body of the while loop. The compilation error
vanishes when a right brace is appended to the end of the program, but
the results during run time will be indecipherable because the brace
should be placed at the end of the loop.

It is usually best to match braces visually before running the
compiler. A C-oriented text editor makes this task easier.

- err.17-

Compiler Error Messages

main()
{

}

inti, j;
char array(80];

gets(array);
i = 0;
while (array[i]) {

putchar(array(i]);
i++;

for (i=O; array(i];i++) {

}

for (j=i + 1; array(j]; j++) {
printf("elements o/od and %d are ", i, j);
if (array(i] == array[j])

printf("the same\n");
else

printf("different\n");
}
putchar('\n');

47: open failure on include file

Aztec C

When a file is #included, the compiler will look for it in a default
area (see the manual description of the compiler). This message will be
generated if the file could not be opened An open failure usually
occurs when the included file does not exist where the compiler is
searching for it. Note that a drive specification is allowed in an
include statement, but this diminishes flexibility somewhat.

48: illegal symbol name

This message is produced by the preprocessor, which is that part of
the compiler which handles lines which begin with a pound sign (#).
The source for the error is on such a line. A legal name is a string
whose first character is an alphabetic (a letter of the alphabet or an
underscore). The succeeding characters may be any combination of
alphanumerics (alphabetics and numerals). The following symbols will
produce this error code:

2nd time,
dont do this!

49: multiply defined symbol

This message warns that a symbol has already been declared and
that it is illegal to redeclare it. The following is a representative
example:

int i, j, k, i; !* illegal *I

- err.18-

Aztec C Compiler Error Messages

50: missing bracket

This error code is used to indicate the need for a parenthesis,
bracket or brace in a variety of circumstances.

51: lvalue required

Only /values are are allowed to stand on the left-hand side of an
assignment For example:

int num;
num = 7;

They are distinguished from rvalues, which can never stand on the
left of an assignment, by the fact that they refer to a unique location
in memory where a value can be stored An !value may be thought of
as a bucket into which an rvalue can be dropped Just as the contents
of one bucket can be passed to another, so can an lvalue y be assigned
to another lvalue, x:

#define NUMBER 512
X= y;
1024 = z;
NUMBER= :x;

I* wrong; llrvalues are reversed *I
I* wrong; NUMBER is still an rvalue * 1

Some operators which require !values as operands are increment
(++), decrement (--), and address-of (&). It is not possible to take the
address of a register variable as was attempted in the following
example:

register int i, j;
i = 3;
j = &i;

52: o~olete [see error 19]

53: multiply defined label

On occasions when the goto statement is used, it is important that
the specified label be unique. There is no criterion by which the
computer can choose between identical labels. If you have trouble
finding the duplicate label, use your text editor to search for all
occurrences of the string.

54: too many labels

The compiler maintains an internal table of labels which will
support up to several dozen labels. Although this table is fixed in size,
it should satisfy the requirements of any reasonable C program. C was
structured to discourage extravagance in the use of goto's. Strictly
speaking, goto statements are not required by any procedure in C; they
are primarily recommended as a quick and simple means of exiting
from a nested structure.

- err.19-

Compiler Error Messages Aztec C

This error indicates that you should significantly reduce the
number of goto's in your program.

55: missing quote

The compiler found a mismatched double quote (") in a #define
preprocessor command Unlike brackets, quotes are not paired
innermost to outermost, but sequentially. So the first quote is
associated with the second, the third with the fourth, and so on. Single
quotes (') and double quotes (") are entirely different characters and
should not be confused The latter are used to delimit string constants.
A double quote can be included in a string by use of a backslash, as in
this example:

"this is a string"
"this is a string with an embedded quote: \". "

56: missing apostrophe

The compiler found a mismatched single quote or apostrophe (') in
a #define preprocessor command Single quotes are paired sequentially
(see error 55). Although quotes can not be nested, a quote can be
represented in a character constant with a backslash:

char c = '\";

57: line too long

!* c is initialized to
single quote *I

Lines are restricted in length by the size of the buffer used to hold
them. This restriction varies from system to system. However, logical
lines can be infinitely long by continuing a line with a backslash­
newline sequence. These characters will be ignored

58: illegal # encountered

The pound sign (#) begins each command for the preprocessor:
#include, #define, #if, #ifdef, #ifndef, #else, #endif, #asm. #endasm.
#line and #undef. These symbols are strictly defined The pound sign
(#) must be in column one and lower case letters are required

59: macro too long

Macros can be defined with a preprocessor command of the
following form:

#define [identifier] [substitution text]

The compiler then proceeds to replace all instances of "identifier"
with the substitution text that was specified by the #define.

This error code refers to the substitution text of a macro. Whereas
ideally a macro definition may be extended for an arbitrary number of
lines by ending each line with a backslash (), for practical purposes the
size of a macro has been limited to 255 characters.

- err.20-

Aztec C Compiler Error Messages

60: oh!iolete [see error 19]

61: reference of member of undefined structure

Occurs only under compilation without the -S option. Consider the
following example: ·

int bone;
struct cat {

int toy;
} manx;
struct dog *samptr;
manx. toy = 1;
bone= samptr->toy; j* error 61 *!

This error code appears most often in conjunction with this kind of
mistake. It is possible to define a pointer to a structure without having
already defined the structure itself. In the example, samptr is a
structure pointer, but what form that structure ("dog") may take is still
unknown. So when reference is made to a member of the structure to
which samptr points, the compiler replies that it does not even known
what the structure looks like.

The -S compiler option is provided to duplicate the manner in
which earlier versions of UNIX treated structures. Given the example
above, it would make the compiler search all previously defined
structures for the member in question. In particular, the value of the
member "toy" found in the structure "manx" would be assigned to the
variable "bone". The -S option is not recommended as a short cut for
defining structures.

62: function body must be compound statement

The body of a function must be enclosed by braces, even though it
may consist of only one statement:

function()
{

return 1;
}

This error can also be caused by an error inside a function
declaration list, as in:

func(a, b)
int a; chr b;
{

63: undefined label

A goto statement is meaningless if the corresponding label does
not appear somewhere in the code. The compiler disallows this since it
must be able to specify a destination to the computer.

- err.21 -

Compiler Error Messages Aztec C

It is not possible to goto a label outside the present function (labels
are local to the function in which they appear). Thus, if a label does
not exist in the sanie procedure as its corresponding goto, this message
will be generated

64: inappropriate arguments

When a function is declared (as opposed to defined), it is poor
syntax to specify an argument list

function(string)
char *string;
{

}

char *funcl();
double func2(x,y);

!* correct *I
j* wrong*/

In this example, function() is being· defined, but funcl() and
func2() are being declared

65: illegal or missing argument name

The compiler has found an illegal name in a function argument list.
An argument name must conform to the same rules as variable names,
beginning with an alphabetic (letter or underscore) and continuing
with any sequence of alphanumerics and underscores. Names must not
coincide with reserved words.

66: expected comma

In an argument list, arguments must be separated by commas.

67: invalid else

An else was found which is not associated with an if statement. else
is bound to the nearest if at its own level of nesting. So if-else pairings
are determined by their relative placement in the code and their
grouping by braces.

if(...) {

if(...) {

} else if(...)

} else {

}

The indentation of the source text should indicate the intended
structure of the code. Note that the indentation of the if and else-if
means only that the programmer wanted both conditionals to be nested
at the same level, in particular one step down from the presiding if

- err.22-

Aztec C Compiler Error Messages

statement But it is the placement of braces that determines this for the
compiler. The example above is correct, but probably does not
conform to the expectations revealed by the indentation of the else
statement As shown here, the else is paired with the first if, not the
second

68: syntax error

The keywords used in declaring a variable, which specify storage
class and data type, must not appear in an executable statement. In
particular, all local declarations must appear at the beginning of a
block, that is, directly following the left brace which delimits the body
of a loop, conditional or function. Once the compiler has reached a
non-declaration, a keyword such as char or int must not lead a
statement; compare the use of the casting operator:

func()
{

int i;
char array[12];
float k = 2.03;

i = 0;
int m;
j = i + 5;
i = (int) k;
if (i) {

}

inti= 3;
j = i;
printf("%d",i);

I* error 68 *I

j* correct *I

printf("%d%d\n" ,i,j);
}

This trivial function prints the values 3, 2 and 3. The variable i
which is declared in the body of the conditional (if) lives only until
the next right brace; then it dies, and the original i regains its identity.

69: missing semicolon

A semicolon is missing from the end of an executable statement.
This error code is subject to the same vagaries as its cousin, error 7. It
will remain undetected until the following line and is often spuriously
caused by a previous error.

70: bad goto syntax

Compare your use of goto with an example. This message says that
you did not specify where you wanted to goto with a label:

- err.23-

Compiler Error Messages Aztec C

goto label;

label:

It is not possible to goto just any identifier in the source code;
labels are special because they are followed by a colon.

71: statement syntax error in do-while

The body of a do-while may consist of one statement or several
statements enclosed in braces. A while conditional is required after the
body of the loop. This is true even if the loop is infinite, as it is
required by the rules of syntax. After typing in a long body, don't
forget the while conditional.

72: 'for' syntax error: missing first semicolon

This error focuses on another control flow statement, the for. The
keyword, for, must be followed by parentheses. In the parentheses
belong three expressions, any or all of which may be null. For the sake
of clarity, C requires that the two semicolons which separate the
expressions be retained, even if all three expressions are empty.

for (; I* an infinite loop which does *I
I* absolutely nothing *I

Error 72 signifies that the compiler didn't find the first semicolon
within the parentheses.

73: 'for' syntax error: missing seoond semicolon

This error is similar to error 72; it means that the compiler didn't
find the second semicolon within the parenthesized expression
following the 'for'.

74: case value must be integer constant

Strictly speaking, each value in a case statement must be a constant
of one of three types: char, int or unsigned. This is similar to the rule
for a switched variable. In the following example, a float must be cast
to an int in order to be switched; however, notice that the programmer
did not check his case statements. The second case value is invalid, and
the code will not compile.

- err.24-

Aztec C

float k = 5.0;
switch((int)k) {
case 4:

printf("good case value\n");
break;

case 5.0:

}

printf("bad case value\n");
break;

Compiler Error Messages

The programmer must replace "case 5.0:" with "case 5".

75: missing colon on case

This should be straightforward If the compiler accepts a case value,
a colon should follow it A semi-colon must not be accidently entered
in its place.

76: too many cases in switch

The compiler reserves a limited number of spaces in an internal
table for case statements. If a program requires more cases than the
table initially allows, it becomes necessary to tell the compiler what the
table value should be changed to. It is not necessary to know exactly
how many are needed; an approximation is sufficient, depending on
the requirements of the situation.

77: case outside of switch

The keyword, case, belongs to just one syntactic structure, the
switch. If "case" appears outside the braces which contain a switch
statement, this error is generated Remember that all keywords are
reserved, so that they cannot be used as variable names.

78: missing colon

This message indicates that a colon is missing after the keyword,
default. Compare error 75.

79: duplicate default

The compiler has found more than one default in a switch. Switch
will compare a variable to a given list of values. But it is not always
possible to anticipate the full range of values which the variable may
take. Nor is it feasible to specify a large number of cases in which the
program is not particularly interested

So C provides for a default case. The default will handle all those
values not specified by a case statement It is analogous to the else
companion to the conditional, if. Just as there is one else for every if,
only one default case is allowed in a switch statement. However, unlike
the else statement, the position of a default is not crucial; a default can
appear anywhere in a list of cases.

- err.25-

Compiler Error Messages Aztec C

80: default outside of switch

The keyword, default, is used just like case. It must appear within
the brackets which delimit the switch statement.

81: break/continue error

Break and continue are used to skip the remainder of a loop in
order to exit or repeat the loop. Break will also end a switch statement.
But when the keywords, break or continue, are used outside of these
contexts, this message results.

82: illegal character

Some characters simply do not make sense in a C program, such as
'$' and'@'. Others, for instance the pound sign(#), may be valid only
in particular contexts.

83: too many nested includes

#includes can be nested, but this capacity is limited The compiler
will balk if required to descend more than three levels into a nest. In
the example given, file D is not allowed to have a #include in the
compilation of file A.

file A file B file C file D
#include "B" #include "C' #include "D"

84: too many array dimensions

An array is declared with too many dimensions. This error should
appear in conjunction with error 11.

85: not an argument

The compiler has found a name in the declaration list that was not
in the argument list. Only the converse case is valid, i.e., an argument
can be passed and not subsequently declared

86: null dimension in array

In certain cases, the compiler knows how to treat multidimensional
arrays whose left-most dimensions are not given in its declaration.
Specifically, this is true for an extern declaration and an array
initialization. The value of any dimension which is not the left-most
must be given.

extern char array[][12];
extern char badarray[5][];

87: invalid character constant

!* correct *I
!*wrong*/

Character constants may consist of one or two characters enclosed
in single quotes, as 'a' or 'ab'. There is no analog to a null string, so "
(two single quotes with no intervening white space) is not allowed
Recall that the special backslash characters (\b, \n, \t etc.) are singular,

- err.26-

Aztec C Compiler Error Messages

so that the following are valid: '\n', '\na', 'a\n'; 'aaa' is invalid

88: not a structure

Occurs only under compilation without the -S option. A name used
as a structure does not refer to a structure, but to some other data type.

inti;
i.member = 3;

89: invalid storage class

/* error 88 *I

A globally defined variable cannot be specified as register. Register
variables are required to be local.

90: symbol rededared

A function argument has been declared more than once.

91: illegal use of floating point type

Floating point numbers can be negated (unary minus), added.
subtracted. multiplied. divided and compared; any other operator will
produce this error message.

92: illegal type conversion

Th!s error code indicates that a data type conversion, implicit in
the code, is not allowed. as in the following piece of code:

inti;
float j;
char *ptr;

i = j + ptr;

The diagram shows how variables are converted to different types
in the evaluation of expressions. Initially, variables of type char and
short become int, and float becomes double. Then all variables are
promoted to the highest type present in the expression. The result of
the expression will have this type also. Thus, an expression containing
a float will evaluate to a double.

hierarchy of types:

double <-- float
long
unsigned
int <-- short, char

This error can also be caused by an attempt to return a structure,
since the structure is being cast to the type of the function, as in:

- err.27-

Compiler Error Messages

int func()
{

}

struct tag sam;
return sam;

93: illegal expression type for switch

Aztec C

Only a char, int or unsigned variable can be switched See the
example for error 74.

94: bad argument to define

An illegal name was used for an argument in the definition of a
macro. For a description of legal names, see error 65.

95: no argument list

When a macro is defined with arguments, any invocation of that
macro is expected to have arguments of corresponding form. This
error code is generated when no parenthesized argument list was found
in a macro reference.

#define getchar() getc(stdin)

c = getchar; I* error 95 *I
96: missing argument to macro

Not enough arguments were found in .an invocation of a macro.
Specifically, a "double comma" will produce this error:

#define reverse(x,y,z) (z,y,x)

func(reverse(i,k));

97: obsolete [see error 19]

98: not enough args in macro reference

The incorrect number of arguments was found in an invocation of
a previously defined macro. As the examples show, this error is not
identical to error 96.

#define exchange(x,y) (y,x)

func(exchange(i)); I* error 98 *I
99: internal

100: internal

[see error 4]

[see error 4]

101: missing clor;e parenthesis on macro reference

A right (closing) parenthesis is expected in a macro reference with
arguments. In a sense, this is the complement of error 95; a macro
argument list is checked for both a beginning and an ending.

- err.28-

Aztec C Compiler Error Messages

102: macro arguments too long

The combined length of a macro's arguments is limited This error
can be resolved by simply shortening the arguments with which the
macro is invoked

103: #else with no #if

Correspondence between #if and #else is analogous to that which
exists between the control flow statements, if and else. Obviously,
much depends upon the relative placement of the statements in the
code. However, #if blocks must always be terminated by #endif, and
the #else statement must be included in the block of the #if with
which it is associated For example:

#ifERROR> 0
printf("there was an error\n");

#else
printf("no error this time\n");

#endif

#if statements can be nested, as below. The range of each #if is
determined by a #endif. This also excludes #else from #if blocks to
which it does not belong:

#ifdef JANl
printf("happy new year!\n");

#if sick
printf("i think i'll go home now\n");

#else
printf("i think i'll have another\n");

#endif
#else

printf("i wonder what day it is\n");
#endif

If the first #endif was missing, error 103 would result. And without
the second #endif, the compiler would generate error 107.

104: #endif with no #if

#endif is paired with the nearest #if, #ifdef or #ifndef which
precedes it (See error 103.)

105: #endasm with no #asm

#endasm must appear after an associated #asm. These compiler­
control lines are used to begin and end embedded assembly code. This
error code indicates that the compiler has reached a #endasm without
having found a previous #asm. If the #asm was simply missing, the
error list should begin with the assembly code (which are undefined
symbols to the compiler).

- err.29-

Compiler Error Messages Aztec C

106: #asm within #asm block

There is no meaningful sense in which in-line assembly code can be
nested, so the #asm keyword must not appear between a paired
#asml#endasm. When a piece of in-line assembly is augmented for
temporary purposes, the old #asm and #endasm can be enclosed in
comments as place-holders.

#asm
I* temporary asm code *I

/* #asm old beginning *I
I* more asm code *I

#endasm

107: missing #endif

A #endif is required for every #if, #ifdef and #ifndef, even if the
entire source file is subject to a single conditional compilation. Try to
assign pairs beginning with the first #endif. Backtrack to the previous
#if and form the pair. Assign the next #endif with the nearest
unpaired #if. When this process becomes greatly complicated, you
might consider rethinking the logic of your program.

108: missing #endasm

In-line assembly code must be terminated by a #endasm in all
cases. #asm must always be paired with a #endasm.

109: #if value must be integer constant

#if requires an integral constant expression. This allows both
integer and character constants, the arithmetic operators, bitwise
operators, the unary minus (-) and bit complement, and comparison
tests.

Assuming all the macro constants (in capitals) are integers,

#if DIFF >= 'A'-'a'
#if (WORD &= -MASK) >> 8
#if MAR I APR I MAY

are all legal expressions for use with #if.

110: invalid use of colon operator

The colon operator occurs in two places: I. following a question
mark as part of a conditional, as in (flag ? 1 : 0); 2. following a label
inserted by the programmer or following one of the reserved labels,
case and default.

111: illegal use of a void expression

This error can be caused by assigning a void expression to a
variable, as in this example:

- err.30 -

Aztec C

void func();
int h;

h = func(arg);

112: illegal use of function pointer

For example,

int (*funcptr) ();

funcptr++;

Compiler Error Messages

funcptr is a pointer to a function which returns an integer.
Although it is like other pointers in that it contains the address of its
object, it is not suject to the rules of pointer arithmetic. Otherwise,
the offending statement in the example would be interpreted as adding
to the pointer the size of the function, which is not a defined value.

113: duplicate case in switch

This simply means that, in a switch statement, there are two case
values which are the same. Either the two cases must be combined into
one, or one of them must be discarded For instance:

switch (c) (
case NOOP:

return (0);
case MULT:

return (x * y);
case DIY:

return (x I y);
case ADD:

return (x + y);
case NOOP:
default

return;
}

The case of NOOP is duplicated, and will generate an error.

114: macro redefined

For example,

#define islow(n) (n>=O&&n<5)

#define islow(n) (n>=0&&n<=5)

The macro, is/ow, is being used to classify a numerical value. When
a second definition of it is found, the compiler will compare the new
substitution string with the previous one. If they are found to be
different, the second definition will become current, and this error
code will be produced

- err.31 -

Compiler Error Messages Aztec C

In the example, the second definition differs from the first in a
single character, '='. The second definition is also different from this
one:

#define islow(n) n>=0&&n<=5

since the parentheses are missing.

The following lines will not generate this error:

#define NULL 0

#define NULL 0

But these are different from:

#define NULL ' '

In practice, this error message does not affect the compilation of
the source code. The most recent "revision" of the substitution string is
used for the macro. But relying upon this fact may not be a wise habit.

115: keyword redefined

Keywords cannot be defined as macros, as in:

#define int foo

If you have a variable which may be either, for instance, a short or
a long integer, there are alternative methods for switching between the
two. If you want to compile the variable as either type of integer,
consider the following:

#ifdef LONGINT
long i;

#else
short i;

#endif

Another possibility is through a typedej:

#ifdef LONGINT
typedef long V ARTYPE;

#else
typedef short VARTYPE;

#endif

VARTYPEi;

116: field width must be > 0

A field in a bit field structure can't have a negative number of bits.

117: invalid 0 length field

A field in a bit field structure can't have zero bits.

- err.32-

Aztec C Compiler Error Messages

118: field is too wide

A field in a bit field structure can't have more than 16 bits.

119: field not allowed here

A bit field definition can only be contained in a structure.

120: invalid type for field

The type of a bit field can only be of type int of unsigned int.

121: ptr/int conversion

The compiler issues this warning message if it must implicitly
convert the type of an expression from pointer to int or long, or vice
versa

If the program explicitly casts a pointer to an int this message won't
be issued However, in this case, error 122 may occur.

For example, the following will generate warning 121:

char *cp;
inti;

i = cp; /* implicit conversion of char * to int *I
When the compiler issues warning 121, it will generate correct code

if the sizes of the two items are the same.

122: ptr & int not same size

If a program explicitly casts a pointer to an int, and the sizes of the
two items differ, the compiler will issue this warning message. The
code that's generated when the converted pointer is used in an
expression will use only as much of the least significant part of the
pointer as will fit in an int.

123: function ptr & ptr not same size

If a program explicitly casts a pointer to a data item to be a pointer
to a function, or vice versa, and the sizes of the two pointers differ,
the compiler issues this warning message.

If the program doesn't explicitly request the conversion, warning
124 will be issued instead of warning 123.

124: invalid ptrjptr assignment

If a program attempts to assign one pointer to another without
explicitly casting the two pointers to be of the same type, and the types
of the two pointers are in fact different, the compiler will issue this
warning message.

The compiler will generate code for the assignment, and if the sizes
of the two pointers are the same, the code will be correct. But if the

- err.33-

Compiler Error Messages Aztec C

sizes differ, the code may not be correct.

125: too many subscripts or indirection on integer

This warning message is issued if a program attempts to use an
integer as a pointer; that is, as the operand of a star operator.

If the sizes of a pointer and an int are the same, the generated code
will access the correct memory location, but if they don't, it won't.

For example,

char c;
long g;
Ox5c=O; / warning 125, because Ox5c is an int *I
c[i]=O; /*warning 125, because c+i is an int *I
g(i]=O; /*error 12, because g+i is a long*/

- err.34-

Aztec C Compiler Error Messages

3. Fatal Compiler Error Messages

If the compiler encouters a "fatal" error, one which makes further
operation impossible, it will send a message to the screen and end the
compilation immediately.

Out of disk space!

There is no room on the disk for the output file of the compiler.
Previous disk files will not be overwritten by the compiler's assembly
language output. To make room on the disk, it is usually sufficient to
remove unneeded files from the disk

unknown option:

The compiler has been invoked with an option letter which it does
not recognize. The manual explicitly states which options the compiler
will accept. The compiler will specify the invalid option letter.

duplicate output file

If an output file name has been specified with the -o option and
that file already exists on the disk, the compiler will not overwrite it.
-0 must specify a new file.

too few arguments for -o option

The compiler expected to find the output filename following the "­
o", but didn't find it. The output file name must follow the option
letter and the name of the file to be compiled must occur last in the
command line.

Open failure on input

The input file specified in the command line does not exist on the
disk or cannot be opened A path or drive specification can be
included with a filename according to the operating system in use.

No input!

While the compiler was able to open the input file given in the
command line, that file was found to be empty.

Open failure on output

The compiler was unable to create an output file. On some
systems, this error could occur if a disk's directory is full

Local table full! (use -L)

The compiler maintains an internal table of the local variables in
the source code. If the number of local symbols in use exceeds the
available entries in the table at any time during compilation, the
compiler will print this message and quit. The default size of the local
symbol table (40 entries) can be changed with the -L option for the

- err.3S-

Compiler Error Messages Aztec C

compiler. Local variables are those defined within braces, i.e., in a
function body or in a compound statement. The scope of a local
variable is the body in which it is defined, that is, it is defined until
the next right brace at its own nesting level

Out of memory!

Since the compiler must maintain various tables in memory as well
as manipulate source code, it may run out of memory during
operation. The more immediate solution is to vary the sizes of the
internal tables using the appropriate compiler options. Often, a
compilation will require fewer than the default number of entries in a
particular table. By reducing the size of that table, memory space is
freed up during compile time. The amount of memory used while
compiling does not affect the size or content of the assembly or object
file output. If this stategy fails to squeeze the compilation into the
available memory, the only solution is to divide the source file into
modules which can be compiled separately. These modules can then
be linked together to produce a single executable file.

- err.36-

Aztec CG65 Cross Development System
Host: PCDOS/MSDOS Target: 65xx-based systems

Version 3.2
_______ Releas_e._D_ocument

25 Aug 1986 ·

This package contains the PCDOS/MSDOS-to-65xx cross
development version of Aztec CG65, v3.2. This release document is
divided into the following sections:

1. Product Overview
2. Packaging
3. Known Bugs
4. Technical Support

If changes have been made to Aztec CG65 since this release
document was printed, information about the changes will be in a file
named read.me on the first distribution disk.

1. Product Overview

Aztec CG65 is a set of programs that translate C language programs
into code that can be executed by a 65xx microprocessor. Using the
Aztec hex65 utility, the generated code can optionally be burned into
ROM

With this version of Aztec CG65, you develop programs on a
PCDOS or MSDOS system.

The package contains the following:

• Disks in IBM PCDOS format, containing the Aztec CG65
software;

• A manual that describes the Aztec CG65 software;

• The commercial version of Aztec C86 for PCDOS, with
which you cah do native development on an IBM PC (i.e.
develop and execute programs on an IBM PC).

2. Product Packaging

2.1 Executable programs

CG65.EXE
AS65.EXE
CCLEXE
ASI.EXE
LN65.EXE
HEX65.EXE

6502/65C02 compiler
6502/65C02 assembler
Pseudo code compiler
Pseudo code assembler
Linker
Intel hex code generater

- 1 -

25 Aug 86 Aztec: CG65, v3.2, (PC-> 6Sxx)

OPTINT65.EXE Pseudo code optimizer
LB65.EXE Object module librarian
CNM65.EXE Object module summarizer
OBD65.EXE _pbj~f! _l!lod~~di_s.playe_r_ ·- __

-SQZ65.EXE ______ ~-- Object module compresser
ORD65.EXE Object module library utility
ARCV.COM Dearchiver
MKARCV.COM Archiver
MAKE.EXE Program maintainance utility
HD.EXE File dumper
CRC.EXE File CRC generater

Note: the actual names of the object module utilities differ slightly
from their documented names; i.e. from the names by which the
manual refers to them. The actual name of an object module utility is
derived from its documented name by appending "65". Thus, the
documented names ofthe object module utilities are lb, cnm, obd, sqz,
and ord, while their actual names are lb65, cnm65, obd65, sqz65, and
ord65.

2.2 Header files

Several 'header files' are provided, which have extension .h, and
which a C source program accesses using the #include statement

2.3 Source Archives

Several files containing source archives are provided Some are
used to make the object module libraries; others, which are not
absolutely necessary for the development of C programs, are provided
because you may find them useful The program arr:v unpacks an
archive's contents into separate files. For a description of an:v, see the
Utility Programs chapter.

The archives that are used to generate libraries are:

DEV.ARC Device driver functions
FL T.ARC Floating point functions
LIBMAKE.ARC Files used to generate libraries
MCH65.ARC Low-level, 65xx-specific functions
MISC.ARC Miscellaneous C-language functions
OVL Y.ARC Overlay functions
PRODOS.ARC Apple I I ProDOS functions
ROM.ARC ROM support functions, and hex65 source
STDIO.ARC Standard 110 functions
TIME.ARC Time functions

The other source archives are:-

CONFIG.ARC
TTY. ARC
XFERARC

Device configuration program, config
Terminal emulator that runs on an Apple I I
File transfer program, xfer

-2-

Aztec CG6S, v3.2, (PC-> 6Sxx) 25 Aug 86

Documentation for amfig, tty, and xfer are in their source archives.

2.4 Sample programs

- --- ~~_ii!~-~ ~'!}J!~~~Q~_!ail!_~__!~ple__C__Q!"Q&LaiD~--

3. Known bu~

3.1 sqz65

~------- -----------~

sqz65, the program that compresses an object module, should only
be used on modules that are going to be put in a library.

3.2 o¢nL65

Don't use oplint65 on cd-compiled modules that contain /foal
variables - for such programs it generates incorrect code. You can use
it on modules that contain double variables.

The-library routines don't contain float variables, so optinl65 can be
used to generate the cci-compiled libraries ci.lib and mi.lib.

4. Technical support information

While we do our best to ship problem free software, sometimes the
unknown does happen and problems occur. Manx has a technical
support staff ready to help you out if you should encounter problems
while using our software. At the very end of this document is a
discussion of how to make the most out of the technical support that
Manx offers. In addition, we have added problem report forms for the
reporting of any problems you may encounter with our software.

- 3-

Using MANX Technical Support

--------- ----~- --
We~ have-put togethe-ra-se-to-f guidelines to help you take the most

advantage of the technical support service offered by MANX We ask
that you read and follow these guidelines to enable us to continuq to
give you quality technical support.

Have everything with you.

Try to be organized When using our phone support. have
everything you need with you at the time you call Our goal is to get
you the help you need without keeping you on the phone too long.
This can save you a lot of time, and if we can keep the calls as short
as possible we can take more calls in the day. This can be to your
advantage on days when we are busy and it's hard to get through.
Also, have the following information ready when you call technical
support We will ask you for this information first.

• Your name. This is necessary in case we need to get back to you
with additional information.

• Phone number. In case we have additional information we will be
able to contact you. This will never be given to anyone, so you
need not worry.

• The product you are using, and the serial number. If you have a
cross compiler please tell us both host and target. even if the
problem is with just one side of the system.

• The revision of the product you are using. This should include a
letter after the number: i.e. 3.20d or 1.06d TinS IS VERY
IMPORTANT. The full version number may be found on your
distribution disks or when you run the COMPILER

• The operating system you are using, and also the version.

• The type of machine you are using.

• Anything interesting about your machine configuration. ie. ram
disk, hard disk, disk cache software etc.

Know what questions you wish to ask.

If you call with a usage question please try to have your questions
narrowed down as much as possible. It is easier and quicker for all to
answer a specific question than general ones.

Isolate the code that caused the problem

- 1 -

If you think you have found a bug in our software, try and create
a small program that reproduces the problem. If this program is small
enough we will take it over the phone, otherwise we would prefer
that you mail it to us, using_th~ Sl!PPii~<i problem report, or leave it

-on ·one -ot-our bbs systems. Once we receive a "bug report" we will
attempt to reproduce the problem and if successful we will try to have
it fixed in the next release. If we can not rewoduce the problem we
will contact you for more information.

Use your C language book and technical numuals first.

We have no qualms about helping you with your general C
programming questions, but . please check with a C language
programming book first This may answer your question quicker and
more thoroughly. Also, if you have questions about machine specific
code, i.e. interrupts or dos calls, check with that machine's technical
reference manual and/or operating system manual.

When to expect an answer.

A normal turn around time for a question is anywhere from 2
minutes to 24 hours, depending on the nature of the question. A few
questions like tracing compiler bugs may take a little longer. If you
can call us back the next day, or when the person you talk to in
technical support recommends, we will have an in-depth answer for
you. But normally we can answer your questions immediately.

Utilize our mail-in service.

It is always easier for us to answer your question if you mail us a
letter (We have included copies of our problem report form for your
use). This is especially true if you've found a bug with our compiler
or other software in our package. If you do mail your question in, try
to include all of the above information, and/or a disk with the
problem. Again, please write small test programs to reproduce
possible bugs. The address for mail-in reports is P.O. Box 55,
Shrewsbury, N.J. 07701. If you have questions/problems concerning
C Prime or Apprentice C,. mail them to P.O. Box 8, Shrewsbury, N.J.
07701.

Updates, Availability, Prices.

If you have any questions about updates, availability of software,
or prices, please call our order desk. They can help you better and
faster. You can reach them at..

- 2-

Outside N.J.--> 1-800-221-0440
Inside N.J.--> 1-201-542-2121 (also for outside the U.S.A.)

Bzilletin board-system---

For users of Aztec C we have a bulletin board system available.
The number is ...

1-(201)-542-2793 This is at 300/1200 bps. (all products)

Answer the questions that will be asked after you are connected
When this is done you will be on the system with limited access. To
gain a higher access level send mail to SYSOP. Include in this
information your serial number and what product you have. Within
approximately 24 hours you should have a higher access level,
provided the serial number is valid This will allow you to look at the
various information files and upload/download files.

To use the bulletin board best, please do not put large (> 8 lines)
source files onto the news system, which we use for an open forum
question/answer area Instead, upload the files to the appropriate area,
and post a news item explaining the problem you are having. Also,
the smaller the test program, the quicker and easier it is for us to look
into the problem, not to mention the savings of phone time.

When you do post a news item, please date it and sign it This will be
very helpful in keeping track of questions. Try to do the same with
uploaded source files.

Phone support, number and hours.

Technical support for Aztec C is available between 9:00 am and
6:00 pm eastern standard time at 1-(20 1)-542-1795. Phone support is
available to registered users of Aztec C with the exception of the
Apprentice C and C Prime products. For those products, please use
the mail-in support service and send questions/problems to P.O. Box
8, Shrewsbury, N.J. 07·70 1.

These guidelines will aid us in helping you quickly through any
roadblocks you may find in your development Thanks for your
cooperation.

- 3-

MANX Problem Report

Date: ___ ; __ --' ___ _

Name:
--~-------------------

Phone #: 1-()-_______ _

Company: ___________________ __

Address: ------------------------------
Product: c86-PC c86-CPM86 c68k

c68k-Am-- ell ~
c65-Prooos--- c65-Dos3.3 --
cross: _________ _

VERSION#: --------
Op.- sys.: _______ _

Send this form to :

Manx Software Systems
P.O. Box 55
Shrewsbury, N.J. 07701

Serial#: -------
Machine Config.: _______ _

(C Prime/ Apprentice Conly):
MANX Software Systems
P.O. Box 8
Shrewsbury, N.J. 0770 I

or call tech support at 1-201-542-1795 between 9am- 6pm EST.
(Sorry, phone support not available for the C Prime/ Apprentice C

product)

Description of problem --
(include what has already been attempted to fix it)
(use the reverse side of this sheet if needed)

MANX Problem Report

I>ate: I ---· __ ____. ----
Name: _______________ _

Phone #: 1-()----
Company: _______________________ __

Address: -----------------------------
Product: c86-PC c86-CPM86 c68k

c68k-Am-- ell C80'"
c65-Proi>~ c65-Dos3.3 ~
cross: ________ _

VERSION#: _____ _

Op. - sys.: ________ _

Send this form to :

Manx Software Systems
P.O. Box 55
Shrewsbury, N.J. 07701

Serial#: --------
Machine Config.: _________ _

(C Prime/ Apprentice C only):
MANX Software Systems
P.O. Box 8
Shrewsbury, N.J. 07701

or call tech support at 1-201-542-1795 between 9am- 6pm EST.
(Sorry, phone support not available for the C Prime/ Apprentice C

product)

I>escription of problem --
(include what has already been attempted to fix it)
(use the reverse side of this sheet if needed)

.. ···:

so ft\Nare systems

End User License Agreement
September 1982

Use and possession of this software package is governed by the following terms:

DEFINITIONS- these definitions shall govern:

A. Supplier means MANX SOF1WARE SYSTEMS. P.O. Box 55,
Shrewsbury, NJ 07701. the author and ov.ner of all rights to this
SOF1WARE.

B. "Customer" means the indovodual purchaser. ots agents and employees.
and the company CUSTOMER v.orks for and its agents and employees,
if the company paid for this software.

C. "Computer" is the single computer on which customer uses this pro­
gram. Multiple CPU systems requires supplementary licenses.

D. "Software" is the set of computer programs on thos package, regardless
of the form in v.hich Customer may subsequently use it, v.hich Cus­
tomer may make to it.

E. "License" means this agreement and the rights and obligations which it
create$ under the United States Copyright Law and Nev. Jersey lav.s.

F. "Runtome Library" is the set of copyrighted Manx Software Systems
language subroutines. prov1ded with each language compiler. a portion
of which must be linked to and become part of a Customer program for
that program to run on the Computer.

The Supplier grants Customer the right to use th1s senalized copy of the
Software so long as customer complies with the terms of the license. Read
the licensing agreement carefully. If you do not agree to the terms con­
tained in this license. return the diskette package UNOPENED to the
Seller from whom you purchased it. v.ho v.ill refund your money subtect to
the conditions of this Agreement.

If the unopened diskette package is not returned to the Seller v.1th1n four­
teen (14} days of delivery the Customer w1ll be deemed to have accepted
all terms of the license agreement and w1ll be bound thereby. Return of a
diskette package that has been opened. damaged or otheMISe tampered
with shall also operate as an acceptance of the license terms by the Cus­
tomer and no money v.ill be refunded. Seller may also deduct the pnce of
the manual. shipping and handling expenses. and other such expenses
that may be incurred in processing returned Software.

When you open the package, you need to s1gn and return the Reg1stratoon
Card in order to become a reg1stered user. and thereafter to rece1ve anum­
ber of substantial benefits. oncluding support and notoce of updated mate­
nals. Supplier does not support unregistered users.

CONDITIONS OF LICENSE
The Supplier agrees to grant. and the Customer agrees to accept, on the
lollo"'1ng te1msand conditions. a non-exclus1ve license to use the soft.,., are
programs herein delivered "''th this agreement.

All updates of MANX SOFTWARE rece1ved by Customer from Supplier. or
from any other source. are sub1ect to the terms and condihons of !h1s
license agreement and Customer hereby agrees to be bound thereby.

DURATION:
This agreement is effective from the date of receipt of the Softv.are and
shall remain in force unless terminated by the Supplier or by the Customer
as provided belov..

LICENSE:
Each program license granted under this Agreement authonzes the Cus­
tomer to use the L1censed Software 1n any mach1ne readable form on the
Computer designated in the agreement. A separate license 1s required for
each Computer on which the licensed Software w1ll be used.

The Customer has no nght to transfer. ass1gn. or sublicense the licenses.
Software, materoals, or this Agreement without proor v.ortten consent from
the Supplier. No nght to print. copy. reproduce or 1n any other manner
duplicate. in whole or in part. the Licensed Software or documentation 1s
granted to Customer except as 1s here1nafter expressly prov1ded.Additional
cop1es of printed materials may be acquored from the Supplier.

Customer understands that unauthorized reproduction of cop1es of the
Software and/or unauthorized transfer of any copy may be a senous cnme.
as well as subject1ng Customer to damages and attorney fees. Customer
may not transfer any copy of the Software to another person unless Cus­
tomer transfers all copies. including the ong1nal. and adv1ses Supplier of
the name and address of that person. who must s1gn a copy of the reg1stra­
t1on card card. pay the then current transfer fee. and agree to the terms of
this License 1n order to use the Software. Supplier "'Ill provtde additional
copies of the card and License upon request. Supplier has the right toter­
minate the License. to trace senal numbers. and to take legal action if
these conditions are violated. Supplier has the nght deny PermiSSIOn to
transfer the Software.

The Customer agrees not to prov1de or disclose the L1censed Soflv.are
including, but not limited to. program list1ngs. ob1ect code. and source
code, in any form. to any person other than Customer. the Supplier or the

Suppliers agents and employees except for the purposes specifically
related to the Customer's use of the Licensed Software on the licensed
computer.

Under no corcumstances shall the Customer provide public access to the
Licensed Software in whole or in part, transformed or untransformed;
including, but not limited to. computer time sharing networks, periodicals.
newspapers. or any other accessable or distributed media

The Customer agrees to take all reasonable steps to 1nsure that the license
terms and conditions will be made known to anyone who uses in whole or
in part the Licensed Software.

The Customer agrees to insure that all materials that could lead to the use
of the licensed Software in a manner that violates this Agreement will be
erased or destroyed when they are no longer needed.

PERMISSION TO COPY OR MODIFY
LICENSED SOFTWARE

The Customer 1s permotted to copy and modify the programs licensed
hereunder prov1ded such mod1fic!ation is required for use of the Licensed
Software 1n the Customer's environfl}ent on the licensed computer. All
modifications or cop1es of the Licensed Software, regardless of how or by
"'hom they "'ere made shall be the property of the Supplier. Supplier's pro­
pnetary interest shall not include the media on which the changes to the
Licensed Softv.are are recorded. All copies or modifications of the
L1censed Softv.are are restricted to the licensed Computer and are bound
by the same terms and conditions of this Agreement as the origonal
L1censed Soft are delivered hereunder.

The Customer ayrees to reproduce and 1nctude the copyright notices on
all cop1es. 1n "'hole or on part. 1n any form. 1ncluding partial copies in mod­
lftcatoons of L1censed Software hereunder.

The Customer agrees to record and retain records of any and all copies or
mod1ftcatoons made to the L1censed Software until they are destroyed. The
Customer agrees to prov1de these records to the Supplier within 30days of
"'rotten request for same.

As an exception to the preceding. Customer IS granted the right to include
port1ons of the Supplier's Runtime Library 1n Customer developed pro­
grams. called Composite Programs. and to use. distribute and license such
Compos1te Programs. As an express condition to the use of the Runtime
L1brary. customer agrees to indemn1fy and hold Supplier harmless from all
cla1ms by Customer and thord part1es ans1ng out of the use of Compos1te
Programs.

PERMISSION TO USE LICENSED SOFTWARE ON ALTERNATE
COMPUTER(S)
Use of the L1censed Software IS by the express terms of this Agreement
restncted to the s1ngle computer des1gnated in the registration card. The
customer may obta1n separate licenseist to use the Licensed Software on
additional Computers under the control and operat1on of Customer by
complet1ng a reg1strat1on card for each computer and returning same to
Supplier w1th the prevailing multiple license fee. The terms of this License
Agreement w1ll be thereby transferred to the newly registered Computer
(st and the partoes shall be bound thereby

DISCONTINUANCE:
W1th1n 30 days of the date of discontinuance of any license under th1s
Agreement. theCustomerwill furn1sh the Suoplierv.1th a certificate certify­
Ing that all of the L1censed Programs. including modifications. cop1es. the
ongonal supplied "'lth thiS Agreement, and any and all denviat1ves have
been destroyed.

DISCLAIMER OF WARRANTY AND LIMITATION OF LIABILITY:
The Supplier makes no "'arrant1es w1th respect to the Licensed Pro­
gram(sl. EXPRESSED OR IMPLIED. INCLUDING. BUT NOT LIMITED TO.
THE IMPLIED WARRANTIES OR MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL THE SUPPLIER BE LIABLE
FOR CONSEQUENTIAL DAMAGES EVEN IF THE SUPPLIER HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENTWILL
SUPPLIER LIABILITY EXCEED THE ORIGINAL PURCHASE PRICE OF
THE LICENSED PROGRAM.

GENERAL:
If any of the prov1s1ons. or port1ons thereof. of th1s Agreement are inval
under any applicable stature or rule of law. they are to that extent to
deemed om1tted and the balance of th1s agreement shall rema1n 1n full for
and effect.

This 1s the complete and exclus1ve agreement between the Supplier and
Customer and supersedes all proposals. oral or v.rotten. and all other com­
mun1cat1ons bety,een the part1es relatong to the subtect matter of the
Agreement. ThiS Agreement may not be modified orally.

Th1s Agreement "'111 be governed by the laws ol the State of New Jersey.

II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 67 RED BANK. N.J.

POSTAGE WILL BE PAID BY

~" M1\NX
so f t.ware syst.en's

Box 55, Shrewsbury, N.J. 07701

NO POSTAGE
NECESSARY
IF MAILEO

IN THE
UNITEO STATES

Registration Card C ~o89
I have read the Software Licensing Agreement for the AZTEC C
Compiler and the other Licensed Programs supplied with the Agreement
and agree to abide by the terms contained in it:

Company --------------=c--- Date ___ _
Phone

________________ No. Name

Address

City _______ State Zip ______ _

Country Product C ~~~C. Version~ ~DC

Please fill out the registration information before opening the diskette
package. Upon receipt of this registration by MANX Software Systems
you will become a registered AZTEC C user.

Signature

0 Initial Registration

Aztec CG6S Index

INDEX

Order of chapters in manual

System Dependent Chapters

title code

Overview ... ov

Tutorial Introduction ... tut

The Compilers .. cc

The Assemblers .. as

The Linker .. In

Utility Programs .. util

Library Generation .. libgen

Technical Information .. tech

System Independent Chapters

Overview of Library Functions ... Iibov

System-Independent Functions .. lib

Style ... style

Compiler Error Messages ... err

Index

Index ... index

- index.l -

Index Aztec CG6S

- index.l-

Aztec CG65

6502 stack tech.l4, 15
65xx link options ln. 9,15
65xx compiler options

cc.7,11
main function libgen.3,4

A
absolute value lib.l6
accessing devices libov.8
acos lib.59-60
adding modules to a library

utiLlS-20
agetc libgen.3,5;lib.25-26
aputc libgen.3,5;lib.41-42
arcv & mkarcv - source

dearchiver & archiver utiL4
arguments as.6
arithmetic operators as.6
array subscripting style. 18
asin lib.59-60
assembler operating

instructions as.3
assembler options as.5

-c as.5
-i as.4,5,9
-l as.4,5
-o as.4,5
-zap as.5

assign buffer to a stream
1ib.56

atan lib.59-60
atan2 lib.59-60
atof lib.8
atoi lib.8
atol lib.8
automatic variables cc. 7, 13

B
base address ln. 9, 12-14
boolean expressions

style. 16-17
buffered binary input

lib.20-21
buffered output lib.20-21
buffering libov.1 0-11
build and unbuild real numbers

lib.22
building the libraries

libgen.5

c
c source file cc.3-5,20
calloc lib.31-32
case table cc. 7, 1 0, 11
cbreak libov.21
ceil lib.l6
ceiling lib.16
change current position

within a file lib.29-30
char cc.17
character classification

funtions lib.11
character-oriented input

libov.18
clearerr lib.15
close lib.9
close a device or a file

lib.9
closing streams

lib.14;libov.9
cnm - display object

file info util5-8
code area tech.4
code section tech.20,27
command line arguments

libov.4-6
comments style. 17

Index

common problems style.15-19
compiler error checking

cc.23
compiler operating instructions

instructions cc. 3
compiler options cc.3, 7

+b cc.7,12,13
+c cc.7,12
+g cc.7,12;libgen.6
+1 cc.7,13
-a cc.5,7
-b cc. 7,23
-d cc. 7,8;tech.8, 13
-e cc.7,10
-1 cc.6-8
-1 cc.7,9,10

- index.J-

Index

-o cc.4,5,7
-s cc.7,8
-t cc.5, 7
-y cc.7,10,11
-z cc.7,11

console i/o libov.l7-21
constants as. 7
convert ascii to numbers

lib.8
convert floating point to

ascii lib.8
cos lib.59-60
cosh lib.61
cotan lib.59-60
ere - utility for generating

the ere for files util9
ere at lib. I 0
create a new file lib.IO
creating an object code

file cc.4

D
data formats cc.l7
default mode libov.7,17,20
defensive programming

style.lO
deleting modules uti119
device i/o libov.7
device i/o utilities

lib.28
directives as.S-9

bss as.S;util 7
cseg as.7
dseg as. 7
end as.7
entry as.8,9;ln.l2,13
equ as.6,8;util6
feb as.9
fcc as.9
fdb as.9
global as.8;ln.ll,l3;

tech.20;uti18
instx.t as.4,5,9
public as.S;ln.ll, 13;

tech.l4,20; util.6
rmb as.9

directories as.4,5,9

Aztec CG6S

double cc.l7
dynamic buffer allocation

libov.ll,22

E
echo mode libov.21
error messages from ovloader

tech.12
error processing libov.23-24
exp lib.12-13
exponential lib.l2-13
expression table cc. 7,1 0
extracting modules

from a library util23

F
fabs lib.16
fclose lib.14
fdopen lib.l7-19
feof lib.15
ferror lib.15
fflush lib.14
fgets lib.27
file i/o libov.6,9-13, 15
fileno lib.l5
float cc.17-19
floating point exceptions

cc.18
floor lib.l6
flterr cc.l8, 19
flush a stream lib.l5
fopen lib.l7-19
format lib.37-40
formatted input conversion

lib.49-55
formatted output conversion

functions lib.37-40
fprintf lib.37-40
fputs lib.43
fread lib.2Q-21
free lib.31-32
freopen lib.17-19
frexp lib.22
fscanf lib.49-55
fseek lib.23-24
ftell lib.23-24

- index.4-

Aztec CG6S

ftoa lib.8
functions calls style.l3-14
fwrite lib.20-21

G
get a string from

a stream lib.27
getc lib.25-26
getchar lib.25-26
gets lib.27
getw lib.25-26
glo ba1 variables cc.I6, I 7

H
hd - hex dump utility

utiLlO
header section tech.18
heap tech.5,6,I2
help util I4,24
hex65 - intel hex generator

util1I-I3;libgen.4;tech.5
hyperbolic functions lib.6I

I
in-line assembly language

code cc.20
incl65 environment variable

as.5,9;cc.6
index lib.62-63
initialized data area

tech.4,5
inquiries lib. IS
ioctl lib.28
isalnum lib.ll
isalpha lib.ll
isascii lib.ll
isatty lib.28
iscntrl lib.11
isdigit lib.ll
islower lib.ll
isprint lib.ll
ispunct lib.l1
isspace lib.ll
isupper lib.ll

L
labels as.6
lb - object file librarian

utiL14-24;libgen.5-7
ldexp lib.22
learning c idioms style. 3
libraries ln.4-8,10
line continuation cc.l4
line-oriented input

libov.l7-I8
linker options ln.9

+C ln.9,15;
tech.5,9,10,12

+d ln.9,I5;
tech.5,9,10,12

+h ln.9,15
-b ln.9,13,14
-c ln.9,I2-14
-d ln.9,12-14
-f ln.9-11
-1 ln.8-10
-m ln.9,1I
-n ln.9,12
-o ln. 7-10,14
-r ln.9,14,I5;tech.9-Il
-t ln.9, II
-u ln.9,I2
-v ln.9,I2

linking process ln.4
literal table cc. 7, 11
local symbol table cc. 9-10
log lib.12-13
logarithm lib.I2-13
long cc.I7
longjmp lib.57-58
loader items tech.2I-27
lseek lib.29-30

M
machine-independent

options cc. 7,8
macro I glo ba1

symbol table cc.Il
macros util31-34,39,40

Index

make - program maintenance
utility util25-42;libgen.3,5-7

makefile util25-42;libgen.3-5

- index.S-

Index

makefile syntax util36
malloc lib.31-32
memory allocation lib.31-32
memory organization tech.4
missing semicolon style. 15
modf lib.22
modularity style. 7
moving modules within

a library util 18
movmem lib.33
mpu. .. symbols cc.22

N
nesting errors style. 1 7
nodelay libov.l7
non-local gotto lib.57-58

0
object library format

tech.27
opcodes as.6
open a stream lib.l7-19
open lib.34-36
opening files and devices

libov.2,6,9
operating instructions as.3
optint65 - pseudo-code optimizer

util.44
options for segment

address specification ln.9, 12
order in a library util.l7
order of evaluation style. 16
order of library modules ln.5
overlays tech.5,7-12
ovloader tech.8,10-13

p
passing data to functions

style. 18
pointer cc.l4,15,17,19
pow lib.l2-13
power lib.l2-13
pre-opened devices libov.4
printf lib.37-40

program organization
tech.6

Aztec CG6S

pseudo stack
libgen.4;tech.4,5, 14,15

push a character back
into input stream lib.65

put a character string
to a stream lib.43

putc lib.41-42
putchar lib.41-42
puterr lib.41-42
puts lib.43
putw lib.41-42

Q
qsort lib.44-45

R
ran lib.46
random i/o libov.6,10
random number generator

lib.46
raw mode libov.20-21
read lib.47
readable code style. 5
realloc lib.31-32
rebuilding a library

util23
register variables

cc.l2,20
rename a disk file

lib.48
replacing modules util20
reposition a stream

lib.23-24
reserved words cc.l6
rewriting the functions

libgen.3
rindex lib.62-63
rules

util25,28-30,32-34,36,39,40
run-time errors style. 12

s

- index.6-

Aztec CG65

scanf lib.49-55
sequential i/o libov.6, I 0
setbuf lib.56
setjmp lib.57-58
setmem lib.33
sgtty fields libov.I9
shared data style. 19
sin lib.59-60
sinh lib.61
sort an array lib.44-45
special symbols cc.l5
sprintf lib.37-40
sqrt lib.l2-13
square root lib.l2-13
sqz- squeeze an object

library util46
sscanf lib.49-55
standard i/o libov.9-13
standard i/o functions

libgen.4,5;libov.l2-13
start-up function libgen.3
startup routine ln.l2, 13
strcat lib.62-63
strcmp lib.62-63
strcpy lib.62-63
stream status lib.l5
string merging cc.l5
string operations lib.62-63
string table cc.ll
strlen lib.62-63
strncat lib.62-63
strncmp lib.62-63
strncpy lib.62-63
structure assignment cc.l4
structured programming

style. 7
supported language features

cc.l4
swapmem lib.33
symbol names cc.l6
symbol table ln.9,11,14,15
symbol tables tech.l9
syntax as.5,6
system-independent programs

libov.l8

T

tan lib.59-60
tanh lib.61
tolower lib.64
top-down programming

style. 8-9
toupper lib.64
trigonometric functions:

lib.59-60

u

Index

unbuffered i/o libov.l4-16
unbuffered i/o functions

libgen.3-5
unbuffered and standard

i/o calls libov.7
ungetc lib.65
uninitialized data area

libgen.4;tech.5
uninitialized variables

style.l5
unlink lib.66
using the linker ln. 7
utility programs util.3

v
void data type cc.l4

w
write lib.67

z
zero page usage

cc.l2; li bgen. 6

- index.7-

