Forward

The CiderTag utility is a Windows Command-line Utility for facilitating the porting of
Apple II programs and files from Windows to the Apple II.

It does so by making a copy of the original file, converting what needs to be converted (at
the user’s discretion). The copy is automatically named using the same name as the
original file, appended by Apple II file system information which follows a naming
convention called CiderPress File Attribute Preservation Tags developed by Andy
McFadden, the author of CiderPress

For those unfamiliar with their use, Andy’s tutorial can be found at the following link:

http://ciderpress.sourceforge.net/tutorial/

If you develop for the Apple I under Windows, or otherwise work with disk images to
run in emulators like AppleWin and/or work with the porting of Apple II files to CF cards
and other media for use with present-day Apple II cards like Rich Dreher’s CFFA3000
you are likely familiar with CiderPress.

And if so, the CiderTag utility may prove useful to you in “massaging” and pre-
processing your Apple II files in ways that aren’t necessarily straight-forward and

otherwise difficult without a lot of “fiddling” and bother.

Why I Wrote CiderTag

[am “on-record” and “guilty as charged” in saying that File Attribute Preservation Tags
are “messy”’ because they make a Windows directory look ugly and cryptic. So now let
me go “on-record” as saying that Andy’s tags are not only a brilliant idea and well-
worthy of the standard they have become, but also dead-dumb simple to program and to
understand and to use.

Many years ago when the Apple II was still in wide-use in the late ‘80’s and into the
‘90’s, I used a serial cable to port my Apple II files between my IBM-PC and my Apple
II. I was programming in Aztec C65 then (as I do now) but back then it was not exactly a
hobby.

The Aztec C65 linker appends a binary header to every program that it creates, even to
ProDOS SYS programs, so to facilitate my modem transfers of my programming [wrote
a utility which just lobbed-off these seemingly useless headers. Fast-forward to the other

11/11/2013 The CiderTag Utility for Working with Apple II Files Page 1 of 14

http://dreher.net/?s=projects/CFforAppleII&c=projects/CFforAppleII/main.php
http://applewin.berlios.de/
http://ciderpress.sourceforge.net/tutorial/
http://ciderpress.sourceforge.net/

day... I’ve been using CiderPress for quite some years to get my latest programs to the
Apple II and I finally asked myself why I was still using the old utility that I wrote so
long ago to behead my files and then manually setting their attributes in CiderPress.

So I pulled-out my Windows compiler and very shortly thereafter CiderTag was “born”.
Like most programmers I began to tweak my new creation and to consider how other
folks might want to use it. Despite my long-time resistance to “feature-creep”, the
potential benefits of my tweaks took over. A few hours later I thought I was done. But
further testing revealed some additional tweaks that would be desirable like preserving
file times of input files and preserving of “Camel Cased” filenames.

But with the writing of this document, the “tweaks” have stopped and CiderTag is
complete and ready to be unleashed on an unsuspecting Planet filled with potential Apple

IT (and CiderPress) users.

In other words, CiderTag was written just for the “funnery” of it. Despite that, I hope it
will be of some use to anyone who may want to use such a thing.

How to get CiderTag

This download is intended to be overlaid over the current AppleX distribution for anyone
who wants to build the programs, but can also simply be downloaded, and used as-is.
Executables and Disk Images are included. The main topic is "retro" Serial
Communications in Aztec C65, but included are many others. This download also
includes CiderTag.

User Documentation:

http://www.aztecmuseum.ca/extras/AppleX UTILITY.pdf

Programmer Notes:

http://www.aztecmuseum.ca/extras/AppleX UTILITY ReadMe.txt

Download it here:

http://www.aztecmuseum.ca/extras/AppleX UTILITY.zip

11/11/2013 The CiderTag Utility for Working with Apple II Files Page 2 of 14

http://www.aztecmuseum.ca/extras/AppleX_UTILITY.zip
http://www.aztecmuseum.ca/extras/AppleX_UTILITY_ReadMe.txt
http://www.aztecmuseum.ca/extras/AppleX_UTILITY.pdf

&+ Wisual 5tudio 2005 Command Prompt

C:~AppledSUTILITY~CiderTag>. .~cidertag
CiderTag{C) vi.1l Copyright Bill Buckels 2813.
All Rights Reserved.
Uzage: "CiderTag [infilel <options —txx —axxxx —h +3 +p +h +n +t +d>»"
Input: BIN File with 4 byte binary header — FileType 86 <(BIN)>
Use Option —txxxx to over—ride FileType B6 (BIN>
Use Option —axx to over—ride Aux Type in header.
Single File — Wildcards and Multiple infiles are not supported?
Optional Input: —h
Headless File (any file without 4 bhyte hinary header?
Headered File <any file that reguires header intact)
Optional FileType Ouver—ride: —txx (2 digit hex value?
Headered FileType Default iz B6 <BIM>
Headless FileType Default is F2Z C(NON>
Optional Aux Type: —axxxx ¢4 digit hex value — Default is @AAA if no header?
Automatic FileTypes:
+z S¥8 +p Shell PRG +h BIN +n NON +t ProDO0OS Text +d DOS 3.3 Text
Output: Headless File with GCiderPress File Attribute Preservation Tags
For Optional Output of Headered Files <i.e Aztec C OQuerlays> use —h
TimeStamp: Output File will inherit Input File TimeStamp.
See the CiderTag Source GCode for more information.

C:“Appled~UTILITY~CiderTag>

(note: if you are having trouble reading the above, zoom to 200% or so)

Usage Overview

It goes without saying that knowledge of the Apple II File System is needed to use a
sophisticated tool like CiderPress. So when it comes to using the little CiderTag utility as
a helper tool, you will hopefully already have been seasoned and educated by “Professor
Andy” and indoctrinated into the mysteries of all that sort of CiderPress good-stuff.

So we’ll start with a quick over-view of CiderTag’s functionality.

CiderTag runs in a Console Window under Windows. It is not an MS-DOS Utility, so it
can’t be run in an MS-DOS emulator like DOSBox.

When you start CiderTag without arguments (type “CiderTag” and press “Enter” with
CiderTag “on-path”) the usage screen shown above will be presented.

Single File

As shown above, CiderTag operates on one file at a time. Since it is trivial to write a cmd
script for Windows that processes a group of files by calling CiderTag repetitively, the
omission of a WildCard option presents no great hardship. After all, folks who use
command line tools write scripts to call them all the time:

@echo off
for % %f in (*.BIN) do call CiderTag % %f -t06 -a4000 -h

Setting of FileTypes and Auxiliary Types and Operating on Headless Files

As shown in the script above, the setting of a FileType, an Auxiliary Type, and operating
on a file without a header are straight-forward options.

11/11/2013 The CiderTag Utility for Working with Apple II Files Page 3 of 14

http://www.dosbox.com/

Files that Already Have Tags

CiderTag will skip converting a file if it has a tag already.

Mutually Exclusive and Duplicate Arguments

Obviously you can break almost anything. CiderTag is no exception. So let’s say you
keep repeating a bunch of different mutually exclusive options on the CiderTag command
line; what will happen? Or let’s say you type in multiple filenames?

To begin with, I let you do that, if that’s what you want to do. You may use this program
for whatever you wish as long as you agree that [have no warranty or liability obligations
whatsoever from said use.

Secondly, CiderTag will overwrite files without prompting, so if you didn’t do-it
correctly the first time you can just do-it over. CiderTag has no “training-wheels”.

But the real answer to the question is that the last FileType and Auxiliary Type entered
will be used, or the last input filename entered will be used. However, since GIGO

applies here, as with any programmer’s or power-user’s utility, the best advice I can give
you is always proceed with caution. ‘nuff said.

Date and Time Stamps

The Date and Time of the input file will be “stamped” on the output file. This is just the
way I have programmed CiderTag, and this functionality is not optional.

Automatic FileTvypes

These are “quick-switches” that I put into CiderTag to avoid much typing for myself.
They are for the most common things that I do with an Aztec C65 program.

So now we move-on to the CiderTag Source Code.

11/11/2013 The CiderTag Utility for Working with Apple II Files Page 4 of 14

CiderTag Source Code

CiderTag is written in the C Programming Language and not C++. It is a very short
and trivial program, and is pretty-well commented. At the top of the program I
placed the usual header info with short description:

A
// System : Win32

// Program : CiderTag.c

// Description : A C Programmers Tool for converting files for the Apple II
// Create Headless Files with File Attribute Preservation Tags
// from Binary (and other) Files

// Handles long filenames (of course).

// Not done to any great brilliance.

// No Wildcard Support.

// Written by : Bill Buckels

// Date Written : November 10, 2013

// Revision : 1.0 Initial Release

// 1.1 TimeStamping added and general polishing.

//

// Licence : You may use this program for whatever you wish as long

// as you agree that Bill Buckels has no warranty or

// liability obligations whatsoever from said use.

/] = e

Below the header info I placed defines and includes. Since this is a console app,
MicroSoft C requires me to explicitly abdicate them of responsibility of using what
are supposedly unsafe and deprecated function calls by the following blessing:

#ifndef _CRT SECURE_NO_DEPRECATE
#define _CRT_SECURE_NO_DEPRECATE
#endif

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <io.h>
#include <time.h>
#include <sys/utime.h>

Following my blessing and commissioning, I have placed some global buffers. What
they are is pretty obvious:

char buf[MAX PATH],
ftype[30],
faddr[30],
infile[MAX PATH],
outfile[MAX PATH];

My function for printing the usage is pretty obvious too. It’s just a series of put-
strings:

11/11/2013 The CiderTag Utility for Working with Apple II Files Page 5 of 14

void pusage()

{

puts ("Usage: \"CiderTag [infile] (options -txx -axxxx -h +s +p +b +n +t
+d)\"") ;

puts ("Input: BIN File with 4 byte binary header - FileType 06 (BIN)");

puts (" Use Option -txxxx to over-ride FileType 06 (BIN)");

puts (" Use Option -axx to over-ride Aux Type in header.");

puts (" Single File - Wildcards and Multiple infiles are not supported!");
puts ("Optional Input: -h");

puts (" Headless File (any file without 4 byte binary header)");

puts (" Headered File (any file that requires header intact)");

puts ("Optional FileType Over-ride: -txx (2 digit hex wvalue)");

puts (" Headered FileType Default is 06 (BIN)");

puts (" Headless FileType Default is F2 (NON)");

puts ("Optional Aux Type: -axxxx (4 digit hex value - Default is 0000 if no
header)") ;

puts ("Automatic FileTypes:");

puts ("+s SYS +p Shell PRG +b BIN +n NON +t ProDOS Text +d DOS 3.3 Text");

puts ("Output: Headless File with CiderPress File Attribute Preservation Tags");
puts (" For Optional Output of Headered Files (i.e Aztec C Overlays) use
-h");

puts ("TimeStamp: Output File will inherit Input File TimeStamp.");

puts ("See the CiderTag Source Code for more information.");

}

I also made a little function that converts strings to lower-case and returns the
string length while it is at it. I use it when I get the command-line args and parse the
options and just want to keep this-out of the main code to make things more
readable down there:

int lcase(char *ptr)

{
int i, len;
char c;

len = strlen(ptr);
for (i=0;i<len;i++) {

c = ptr[i];

ptr[i] = tolower(c);
}

return len;

The following function is used to date-stamp the output file. It’s really only a
wrapper for utime and is called from main as well (everything is):

/* use the _utime function to copy file times from the input file
to the output file */
int TimeStamp (char *fname, time_t actime, time_t modtime)

{
/* structure for call to _utime */
struct _utimbuf timbuf, *ptimbuf = NULL;

timbuf.actime = actime;
timbuf.modtime = modtime;

ptimbuf = (struct _utimbuf *)&timbuf;

11/11/2013 The CiderTag Utility for Working with Apple II Files Page 6 of 14

/* set the times in the target file */
if(_utime(fname, ptimbuf) == -1) return -2;
return O;

This little function below checks input filenames to ensure that we skip files with
tags. Also called from main:

int AlreadyDone (char *fname)
{

char *ptr;

int idx, jdx=999;

for (idx = 0; fname[idx] '= (char)0; idx++) {
if (fname[idx] == '#') jdx = idx;

}

if (jdx == 999) return O;

ptr = (char *)&fname[jdx];

idx = strlen(ptr);

if (idx == 7) return -1;

return O;

Main begins with the declarations of the automatics (stack variables) that I use to
process the input file. I set some defaults here as well. Note that I set my return

status to an error (non-zero) until I am done. Note also that stripping of header info
is the default unless otherwise disabled. The naming is probably descriptive enough

for you to get the idea here:

int main(int argc,char **argv)

{
FILE *fp,*fp2;

long count = 0,target,findhandle;

/* structure for file find to get time stamps and preserve
CamelCasing (upper and lower case letters) from input file
for output file */

struct _finddata_t wild card;

int status=1, strip=1, len, addr=0, i;
unsigned char c, msk = 0, txt = 0;

/* timestamp the output file with the times from the input file */
time_t actime; /* access time */
time_t modtime; /* modification time */

Now we are good to go and if no args we just print the usage after we print the
banner:

/* no quiet mode for this utility... for diagnostic reasons.
if they screw-up with their options then wonder why their files
didn't convert properly this is the kindest thing to do... */

puts ("CiderTag(C) vl1.1l Copyright Bill Buckels 2013.");
puts ("All Rights Reserved.");
if (argec < 2) {

11/11/2013 The CiderTag Utility for Working with Apple II Files Page 7 of 14

pusage() ;

If we do have some command-line args we are open for business so let’s see what
our user has entered...

else {
/* get input file and options */
/* valid options are echoed to the screen,
invalid options are ignored and defaults are used instead */
faddr[0] = ftype[0] = infile[0] = (char)O;
for (i=1l;i<argc;i++) {
strcpy (buf,argv[i]) ;
c = buf[0];
if (¢ == '-") {
len = lcase((char *)&buf[0]);

c = buf[l];
switch(c) {
case 'h': if (len '= 2) break;
puts("-h Do Not Strip Header!");
strip = 0;
break;
case 't': if (len '= 4) break;
strcpy (ftype, (char *)&buf[2]);
printf ("-t FileType %s\n", ftype) ;
break;
case 'a': if (len '= 6) break;
strcpy (faddr, (char *)&buf[2]);
printf ("-a Aux Type %s\n", faddr);
break;
}
continue;
}
if (e == "+') {

len = lcase((char *)&buf[0]);
if (len > 2) continue;
c = buf[l];
switch(c) {
case 's': strcpy(ftype,"ff");
printf ("+s FileType %s\n", ftype) ;
break;
case 'p': strcpy(ftype,"£f8");
printf ("+p FileType %s\n", ftype);
break;
case 'b': strcpy(ftype,"06");
printf ("+b FileType %s\n", ftype) ;
break;
case 'n': strcpy(ftype,"£f2");
printf ("+n FileType %s (NON)\n", ftype) ;
puts (" Header if any remains intact!");
strip = 0;
break;
case 't': strcpy(ftype,"04");
printf ("+t FileType %s\n", ftype);
puts (" No Header. Convert to ProDOS Text!");
strip = 0;
txt = 1;
break;
case 'd': strcpy(ftype,"04");
printf ("+d FileType %s\n", ftype) ;
puts (" No Header. Convert to DOS 3.3 Text!");
strip = 0;

11/11/2013 The CiderTag Utility for Working with Apple II Files Page 8 of 14

msk 0x80;
txt = 1;
break;

}

continue;

}

/* the following is our first test to see if a valid file name
has been entered as an input file... */
if (AlreadyDone (buf) !'=0) {
printf ("Skipping %s. Attribute Flags already exist!\n", buf);
return status;

}

if ((findhandle = _findfirst(buf, &wild card)) < 11) continue;

/* get the times from the source file */

actime = wild card.time_ access;

modtime = wild _card.time_ write;

/* Windows is not case-sensitive when it comes to opening
files, and since this is a commandline utility it is
unlikely the user typed the input filename using mixed
case.

But for Aesthetics, get the proper mixed case letters for
the output filename from the file system. */

strcpy (outfile,wild card.name) ;

/* release the handle */
_findclose (findhandle) ;

/* echo the input file to the screen */

/* note that I have not used the filename returned from the
file system for the input file and instead I have stuck
with the filename that the user entered. From my view this
is a good thing. If the user entered a pathed name, this
utility will still likely work and the output file will be
dropped in the current directory. But since wildcards are
not supported, if the user has entered wildcards, this
utility will fail when we try to open the input file. This
is also a good thing from my view since supporting
wildcards is beyond the scope of CiderTag. */

strcpy (infile, buf) ;
printf ("Infile : %s\n",infile);

}

/* if the filetype for the output filename tag has not been set
by now, set-it to a bin file unless we are not stripping the
header, in which case set it to a NON type and let them
know... */

if (ftype[0] == (char)O0) {

if (strip == 1) {
strcpy (ftype, "06") ;
printf ("+b FileType %s\n", ftype) ;
}
else {
strcpy (ftype, "£2") ;
printf ("+n FileType %s (NON)\n", ftype) ;

11/11/2013 The CiderTag Utility for Working with Apple II Files Page 9 of 14

/* if we are stripping the header, let them know */
if (strip == 1) puts("+h Strip Header!");

We have finished getting our arguments and doing our initial set-up by the time we
get to here. Now I use one of my favorite C constructs... “the forever loop” but I
don’t really loop because I break unconditionally at the bottom. This construct is
great for testing a set of conditions prior to a nested process loop... note the breaks
every-time I find something I don’t like...

for(;;) {
/* they may have screwed-up entering the input file name...
or some other issue so check for common errors

and let them know... */
if (infile[0] == (char)0) {

pusage () ;

puts ("No Input File!");

break;

}
fp = fopen(infile,"rb");
if (fp == NULL) {
perror (infile) ;
break;
}
target = filelength(_fileno(£fp));
if (strip == 1) target -=4;
if (target < 1L) {
puts ("Input File is too small!");
fclose (fp) ;
break;

}

if (strip == 1) {
/* if we are stripping the header, use the first
2 bytes to create the Aux Type (load address) */
c=fgetc (fp) ;
addr = (int) fgetc(£fp) ;
addr = (int) ((addr << 8) | c);
fgetc (fp) ;
fgetc(fp);
}

/* if they did not previously over-ride the Aux Type
on the command-line then use the value from the
header or the intitial value of 0 for the Aux Type
and let them know what it is... */

if (faddr[0] == (char)0) {

sprintf (faddr,"%04x" ,addr) ;
lcase (faddr) ;
printf ("+a Aux Type %s\n", faddr);

/* We already have the basename of the input file in the
output filename buffer.
Concatanate the file attribute preservation tags
to the input file name after the pound-sign separator
to create the output filename, try to open it,
then let them know what the output file will be called. */

strcat (outfile,"#");
strcat (outfile, ftype) ;

11/11/2013 The CiderTag Utility for Working with Apple Il Files = Page 10 of 14

strcat (outfile, faddr) ;

fp2= fopen (outfile,"wb") ;

if (fp2 == NULL) {

}

fclose (fp) ;
perror (outfile) ;
break;

printf ("Outfile : %s\n",outfile);

/* read the input file a byte at a time.

Text File Notes:

if we are explicitly outputting an ascii text file
strip the MS-DOS line feeds if any... and strip the
hi-bits.

I am not bothering to expand tabs for this version.

If we are explicitly outputting to a DOS 3.3 Text File,
set the hi-bits except for the NUL characters.

I am not bothering with Unix text at all. This is not a
Unix text conversion utility nor have I a desire to make
it one.

However, I am also not converting any text to Apple II
text unless explicitly asked to do so.

The Aztec C DOS 3.3 Shell does not accept DOS 3.3 text for
Shell Scripts is one reason I don't just blindly convert.
Some things are best left alone.

As far as RATF's go, for DOS 3.3 the -d switch should be
used, and no Aux Type specified, since it is meaningless.

For ProDOS RATF's the -t switch should never be used...
but the -h switch should be used and the -a Aux Type
should be used to specify the record length in hex.

Anyone working with RATF's in Windows then porting them
back to the Apple II had best know their stuff.

*/

We are still in “the forever loop” so everything must be ok so far. So now we go into
the nested process loop. This is nothing more than a byte for byte binary copy of the
file data except as noted below:

11/11/2013

while (count<target)

{

c=fgetc (fp) ;

/* I separated the explicit text file conversion
from the simple verbatim bytecopy routine */
if (txt == 1) {
count++;
/* BApple II text files are 7 bit ascii so standard

The CiderTag Utility for Working with Apple Il Files = Page 11 of 14

practice is to preserve file integrity by
stripping the hi-bits on the way over to the
Apple II... */

c &= Ox7f;

/* skip line-feeds */

if (c == (unsigned char)10) continue;

/* NUL characters are valid in Apple II
text files */

if (¢ == (char) 0) {
fputc (c, £p2) ;
continue;

/* if we are converting to ProDOS text, the msk
will be 0, so no harm done. But if we are
converting to DOS 3.3 text, the msk will be
0x80 and the hi-bits will be set. */

fputc((c | msk),£fp2);

continue;

}

fputc(c, £fp2) ;
count++;

}

fclose (fp) ;

fclose (fp2) ;

puts ("Done!") ;

/* return 0 if written successfully */
status = 0;

/* if we were able to write the output file, it is unlikely
that we will fail to stamp the file times from the input

file. but I have put an error check here anyway... */
if (TimeStamp (outfile,actime,modtime) !'= 0)
printf ("TimeStamping of %s failed!\n.",outfile) ;

break;

As you can see we are done. We broke unconditionally out of “the forever loop”
when we reached the bottom and now we can return safe and sound to the Windows
console to await further orders:

return (status);

}

End of Listing

11/11/2013

The CiderTag Utility for Working with Apple II Files

Page 12 of 14

Closing Remarks

Utilities for the Windows Console like CiderTag are pretty easy to knock together in the
C Programming Language. Admittedly, at 80K, CiderTag seems a bit large when
compared to an Aztec C65 program for the Apple II, but compared to some of the
“bloatware” that we see these days occupying entire DVD’s or even the size of this
document, they are tiny for sure.

Apple II Links

Knowledge of the Apple II File System is essential for the use of this utility.

DOS 3.3 disks can be read and edited at the track and sector level from either DOS 3.3 or
ProDOS. Aztec C65 version 3.2b now supports this functionality. The following
programs provide the basis to build Aztec C65 utilities that could be used to copy files
from DOS 3.3 disks to ProDOS, or to create DOS 3.3 disk images (and other disk image
types) on ProDOS media, and for the many other potential uses of the DOS 3.3 RWTS
call and the ProDOS READBLOCK and WRITEBLOCK MLI calls.

Read about it here:

http://www.aztecmuseum.ca/extras/chtype_DOS33.pdf

Download the working programs, disk images and source code here.
1. Changing DOS 3.3 FileTypes in an Aztec C65 Version 3.2b DOS 3.3 Program
DOS 3.3 RWTS example:

http://www.aztecmuseum.ca/extras/READBLK.zip

11/11/2013 The CiderTag Utility for Working with Apple Il Files = Page 13 of 14

http://www.aztecmuseum.ca/extras/READBLK.zip
http://www.aztecmuseum.ca/extras/chtype_DOS33.pdf

If you have Apple33 installed, unzip into the AppleX\PROJECTS directory.

2. Changing DOS 3.3 FileTypes in an Aztec C65 Version 3.2b ProDOS 8 Program

ProDOS 8§ READBLOCK equivalent example:

http://www.aztecmuseum.ca/extras/CHTYPE.zip

If you have AppleX installed, unzip into the Apple X\PROGRAMS directory.

The chtype and chtype33 example programs while relatively simple and straight-forward
are more than simply demo programs. They actively change DOS 3.3 file types so use

with caution.

Other related DOS 3.3 downloads:

The Aztec C65 DIR33 Project for Apple I DOS 3.3 - RWTS “revealed”:

http://www.aztecmuseum.ca/extras/DIR33.zip

http://www.aztecmuseum.ca/extras/WorkingWithFiles.txt

Other related ProDOS downloads:

http://www.aztecmuseum.ca/UTL.zip

CHANGE.DSK

CHMOD - change file permissions
CHTYPE - change file types
TOUCH - change file dates

LIST.DSK

FI - List ProDOS 8 file info (try it)
LM - List Multiple Files (try it)

All the Best,
Bill Buckels

bbuckels@mts.net
November 11, 2013

11/11/2013 The CiderTag Utility for Working with Apple II Files

Page 14 of 14

mailto:bbuckels@mts.net
http://www.aztecmuseum.ca/UTL.zip
http://www.aztecmuseum.ca/extras/WorkingWithFiles.txt
http://www.aztecmuseum.ca/extras/DIR33.zip
http://www.aztecmuseum.ca/extras/CHTYPE.zip

