

An Application in Bank Credit Risk Management
System employing a BP Neural Network based on

sfloat24 custom math library using a low cost
FPGA device

M. C. Miglionico1, F. Parillo2

1 Department of Culture of the Project Second University of Napoli
Via S. Lorenzo, Monastero di San Lorenzo, I-81031 Aversa (CE) – ITALY

BENECON Scarl – Member of UNESCO
E-mail:mcristina.miglionico@unina2.it

2 Department of Electrical Engineering and Information University of Cassino

Via G. Di Biasio 43, I-03043 Cassino (FR) - ITALY
E-mail:f.parillo@unicas.it

Abstract. Artificial Neural Networks (ANNS) base their processing capabilities
in parallel architectures. This makes them useful to solve pattern recognition,
system identification and control problems. In particular, it is extremely im-
portant for commercial banks to set up an early bank credit risk warning sys-
tem. The authors set up early warning indicators for commercial bank credit
risk, and carry out the warning for the credit risk in advance with the help of the
ANNS.

A three layer ANN has been implemented, using a custom developed
sfloat24 math library, on a low cost FPGA device.

Keywords: Artificial Neural Network, Field Programmable Gate Array
((FPGA), sfloat24 math library.

1 Introduction

Artificial Neural Networks (ANNS) are used with success in pattern recognition prob-
lems, function approximation, control, etc. There are different kind of electronic im-
plementation of ANNS, digital, analog and hybrid [1] and each one has specific ad-
vantage and disadvantages depending on the type and configuration of the network,
training method and application.

For a digital implementation of ANNS there are different alternatives, custom de-
sign, digital signal processors, programmable logic, etc. Programmable logic offers
low cost, powerful software tools and true parallel implementations.

As well known the digital systems, in particular the FPGA devices have the follow-
ing fundamental properties [2]:

2

 Insensitivity to environment. Digital systems are considered less sensitive to envi-
ronmental conditions than analog systems. In contrast, digital system’s operations
do not depend on its environment.

 Insensitivity to component tolerances. Analog components are manufactured to
particular tolerances. The overall response of an analog system depends on the ac-
tual values of all the analog used components.

ANNs are nonlinear self-adaptive dynamic systems, which simulate human's neural
system structure. They are ideal to solve early warning system of the commercial
bank credit risk [3], [4].
Traditionally to solve early warning problems the following methods could be used:

 Fuzzy logic technique has been in its wide-ranging use in modelling of uncertain-
ties, vagueness, impreciseness and the human thought process. The main problem
of this approach is the fact that the credit analyst needs to analyse and assume a
large number of differently valuated factors in a short time.

 Monte Carlo method usually takes a long time to simulate rare event, the failure
event of repaying loans is treated as rare event due to the relatively low probability,
and the failure probability of repaying loans is taken as the criterion to measure the
level of credit risk [5].

The commercial bank’s credit risk management could be analysed also adopting the
following most recent, methods:

 Bayesian Network is a graphical representation of statistical relationships between
random variables, through a Direct Acyclic Graph (DAG), widely used for statisti-
cal inference and machine learning. This method consists in two parts: in the first
part is implemented a function that scores each DAG based on how accurately it
represents the probabilistic relation between variables based on the realization in a
generic dataset. In the second part a search procedure, that selects which DAGs to
score within the set of all possible DAGs [6].

 Support Vector Machine (SVM) is an excellent method used to solve this kind of
problem. This theory was initially developed by Vapnik. It is a learning machine
based on statistical theory, and is used for classification and regression. The SVM
is used to solve the over-fitting problem. Empirical risk is defined to be just the
measured mean error rate on the training set [7].

To implement the bank credit risk management system, depicted in the section 3,
an ANN is sufficiently suitable. Their usage avoids the very difficult task to imple-
ment one of the above mentioned methods on a low cost FPGA device.
In this paper the authors present the design and the implementation of a complete
ANN on an ALTERA® Cyclone III EP3C25F324C8 FPGA evaluation board.
The implementation of an Artificial Neuron is widely described in [8].
The authors have developed a floating point math library for FPGAs, called sfloat24
[9], [10]. This library has been used, in this paper, for the Artificial Neural Network
implementation. Respect to the classical IEEE 754 [11], [12] floating point number
format, the numbers are stored in a 24 bit word length [13].

3

Using this library the smallest number, neglecting the sign (Most Significant Bit), is
represented by the following word:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

that correspond to a decimal value of 1.08423e-19, the greatest value is represented by:

0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

that corresponds to: 18.4467e+18.

2 Artificial Neural Network ─ Back Propagation algorithm
operating principle

The back-propagation (BP) learning process is widely adopted as a successful learn-
ing rule to find appropriate values of the weights for ANNS. The BP learning process
requires that the activation function is derivable. An example of a derivable function
is the sigmoid.

A sigmoid function has the following expression:
1

()
(1)x

f x
e

This function has been implemented using the CORDIC theory [14].
Here is discusses only the application of the CORDIC theory to implement the hy-

perbolic functions in order to show an optimized version of the algorithm used to
implement this kind of math functions and consequently to implement the sigmoid
function.

As said in [8] the hyperbolic functions can be formulated using the following ex-
pressions:

1tanh (2)i
i

1

1

1

2

2

i
i i i i

i
i i i i

i i i i

x x y d

y y x d

d

where 1id if 0i , +1 otherwise.

The hyperbolic functions are present in the xi and yi variables. In this case, the steps of
for … loop construct are 24, because the input variable can assume any value; the
hyperbolic are not circular math functions.

The exponential functions can be easily derived from the hyperbolic functions as
following:

sinh() cosh()xe (sinh() cosh())xe

(4)

(2)

(3)

(1)

Exponent field BIAS=63 Fractional part of mantissa [15 … 0] S

Exponent field BIAS=63 Fractional part of mantissa [15 … 0] S

4

At this point it easy to formulate the expression (1) using the second expression (4).
With reference to the Fig. 1, the output value of the hidden-layer and the output-layer
should meet the following conditions:

[][] [][1]
0

()
n

j j i i n
i

a f w W

 i N
[][] [][1]

0

()
j

j h j i h j n
i

y f w W

 i K

where the quantities W[i][n+1] and W[j][n+1] are the thresholds of the input and the hid-
den layer respectively.

Fig. 1. Schematic diagram of a generic neural network.

The hidden layer node and the output layer node's transfer function uses, in general,
the expression (1).
The purpose of the network training is to find a set of weights that minimize the fol-
lowing quantity:

1
2

0

1
()

2

k

ii
i

E y y

where iy is the desired output and yi is the actual output of the trained network.

In a BP ANN, the performances are heavily influenced by the weights correction
method.

3 FPGA Implementation – Simulation results –

It is possible, on the basis of the expressions (2), (3) and (4), to build the sigmoid
function.
The code of the hyperbolic functions has been written in VHDL. If the VHDL code is
written similar to the C code depicted in [8], using, the for ….. loop instruction the
sfloat24 sigmoid activation function occupies the 44% of total logic elements of the
ALTERA® Cyclone III EP3C25F324C8 device. In this case, the compilation, the

(6)

Input layer Hidden layer Output layer

W h[0][n+1]=(-1)b

a0 Wh[0][0]

Wh[0][n]

an

X0=1

x0(t)

xn(t)
y0(t)

Xh0=1

f

f
f

(5)

5

-0.12

-0.09

-0.06

-0.03

0

0.03

0.06

0.09

0.12

0 0.5 1 1.5 2

adders output

di
ff

er
en

ce

synthesis and the fitting process are very expensive in terms of requested time to per-
form all the mentioned operations.
Using the expression (1) to implement a full Artificial Neural Network similar to the
one shown in Fig. 1, any Cyclone® III FPGA device family is not capable to perform
this operation. In this case an ALTERA® Stratix FPGA could be required [8].
To avoid this, to reduce the occupation of the device logic elements, the authors have
considered [15] the following approximation of the sigmoid function:

0.5 (0.5)
1ss

a
f

a

Fig. 2. Simulation results – (a) Sigmoid activation function and the approximation of the same,
blue line. (b) The absolute difference between two math functions.

Implementing the (7), always using the sfloat24 math library, the occupation the logic
elements on the same FPGA device is only 7%, the optimization is obtained also dur-
ing simulation phase.
The shortcoming of this approximation is that the BP algorithm numeric convergence
time is greater respect to the case of an ANN that use as activation function a pure
sigmoid. The BP algorithm has been written in MS® Visual Studio 2008. In Fig. 2 (b)
is depicted the error between the expressions (1) and (7).
To improve the sigmoid function algorithm performances and to reduce its occupation
into FPGA device, the for … loop construct has been substituted by a counting event
of an external counter. This operation allows faster compilation, synthesis and fitting

(7)

(a)

(b)

0

0.2

0.4

0.6

0.8

1

1.2

f(
a)

, f
ss

(a
)

6

device operations under ALTERA® Quartus II environment and with the same num-
ber of iterations.

In order to perform 25 iterations a 5 bit external counter is required, an auto-reset
operation occurs when its value is greater of 24.

The counter is implemented on the same FPGA device, the term “external” means
that it is not a component of the sigmoid code, but gives only the event (rising edge)
to execute the implemented optimized code, as depicted in Fig.3.

In this case, considering 25 iterations, the device occupation of the sigmoid func-
tion VHDL code is 15%, instead 44% relative to the case of usage of the algorithm
depicted in [15].

Using this version of the algorithm instead that described in [15] the compilation,
synthesis and fitting operation in to FPGA device is 20 time faster.

Fig. 3. Operating principle of the sigmoid optimized algorithm obtained using an external
counter.

Fig. 4. Hyperbolic and Sigmoid functions Simulink® simulation layout.

In the following is shown the obtained sigmoid function compared to the same func-
tion built with Simulink® blocks. It is important to underline that the Matlab® operates
with double precision floating (64 bit) point numbers. The simulations have been
performed using the ALTERA® DSP Builder tool, in particular using the HDL import
block, as depicted in Fig. 4.

if(clk='1'and clk'event) then
 if(i=0) then
 ...CORDIC algorithm init;
 end if;

 if(i>0 and i<24) then
 ...execute the CORDIC;
 ...algorithm;
 end if;

 i:=i+1;
 if(i=24) then
 sinhx:=x(23 downto 0);
 coshx:=y(23 downto 0);
 end if;
end if;

CLOCK
counter5b

entity

0

24

7

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0 0.5 1 1.5 2

adders output

er
ro

r

Fig. 5 shows the simulation results when the sampling time Ts has been fixed to a
2.56 µS, in this case the output error varies in the range ±0.006 about. Other simula-
tions have been performed with different sampling times. In all the tests, results that
the entire system has latency time at maximum of 6 clock cycles.

The system presents a stable performance comparing to the any external disturb-
ance.
Two additional routines, green blocks depicted in Fig. 4, allow to test the Artificial
Neuron performances. These routine, convert respectively a given floating point
number in to sfloat24 number layout format and vice versa.
These routine, due to their complexity, have been written in C/C++ language and
implemented as S-Function as depicted in [10].

Fig. 5. Simulation results – (a) Sigmoid activation function and (b) the absolute error between
the sigmoid generated by the sfloat24 math library and one generated by Simulink® math func-
tion block.

As example of a decision system credit the situation of a current account holder
that requires a loan at proper credit institute with its risk evaluation has been taken
into consideration.
The risk is represented by the variable R. The variable x0 indicates whether the current
account holder has got (value = 1) a real estate property or hasn’t (value = -1). The
current account holder has got a mortgage loan (x1 = 1) or hasn’t (x1 = -1), or (x1 = 0) if
he does not own any property. The variable x2 represents the availability of a profit
(value = 1) or not (value = -1) if the profit is non-existent or insignificant (x2 = 0). The

(a)

(b)

0

0.2

0.4

0.6

0.8

1

1.2

f(
a)

8

loan applicant has a good behaviour (x3 = 1), middle (x3 = 0) or bad (x3 =-1) with the
credit institute. The case study is summarized in the following table:

Table 1. Training set of the implemented ANN, in this case, only for simplicity, are considered
12 examples, 13 and 14 represent the validation sets.

N. x0 x1 x2 x3 O R
1 1 1 0 1 0.5 0.5
2 1 1 1 0 0.5 0.5
3 1 1 -1 0 0 1
4 1 1 0 -1 0 1
5 1 -1 0 1 1 0
6 1 -1 1 0 1 0
7 -1 0 1 0 0.5 0.5
8 1 -1 -1 -1 0 1
9 -1 0 1 1 1 0

10 1 -1 -1 0 0.5 0.5
11 1 -1 1 -1 0.5 0.5
12 -1 0 -1 1 0.5 0.5
13 -1 0 0 0 0 1
14 -1 0 -1 -1 0 1

where O represents the desired output of the implemented ANN

Training, using the first 12 examples of Table 1, an ANN constituted only by 3
neurons in the hidden layer and 1 neuron in the output layer, the maximum error,
difference between desired output and the actual ones, reached is 0.1%.
The examples 13 and 14 are used as validation set.

Fig. 6. ANN used for the case study depicted in the Table 1.

a0

W[0][1]

W[3][1

W[0][2]
Wh[0][1]

Wh[0][2]

a1

a2

x1(t)

y0(t)

x2(t)

W[0][0]

W[3][0

Wh[0][0]

x0(t) f

W [4][0]=(-1)b

W [4][1]=(-1)b

W [4][2]=(-1)b

f

f

f

W[3][2]

Xh0=1 X0=1

W h[0][3]=(-1)b

x3(t)

9

The device occupation of the entire ANN of Fig. 6, on the above mentioned FPGA
device, is equal to 92% of logic elements.

The risk of the credit institute is simply evaluated as the opposite of the desired
output as depicted in the last column of the Table 1.

Table 2. ALTERA® Quartus II report of the implemented ANN.

Total logic elements 22,757/24,624 (92%)
 Total combinational functions 22,734/24,624 (92%)
 Dedicated logic registers 2,236 (9%)

Total registers 2236

To examine more complex situations it is necessary to implement ANN with a major
number of neurons. With the used low cost FPGA device this operation is not possi-
ble, because it is not capable to accommodate other neurons; this is depicted in the
Table 2.

4 Conclusions

The obtained results show, through an optimized algorithm of the sigmoid func-
tion, the validity and the feasibility of the implementation of a complete trained ANN,
using the developed sfloat24 math library.

The speed execution or latency of the ANN can be precisely controlled with the
amount of reuse of sfloat24 arithmetic elements.

From the angle of theory combined with the practice, in this paper have been ana-
lysed two aspects: the implementation of an ANN on a FPGA device and the profes-
sion and causation of credit risk in bank and/or a credit institute. The depicted con-
cepts lead to the following conclusions:

 Back-propagation neural networks are good candidate for the applications concern-
ing in loans risk evaluation.

 Fault-tolerant ability. Because the network knowledge information adopts the dis-
tributed memory topology, the individual unit's damage cannot cause a mistake
output.

Acknowledgement
The authors would like to thank the anonymous reviewer for his valuable sugges-

tions, useful to improve this work.

References

1. M.A. Banuelos, j. Castillo Hernandez, S. Quintana Thierry, R. Damian Zamacoma, J. Va-
leriano Assem, R.E. Cervantes, R. Fuentes Conzalez, G. Calva Olmos, J.L. Perez Silva,
Implementation of a Neuron Using FPGAS. Journal of Applied Research and Technology,
Vol. I numero 003, 3 October 2003, Universitad Nacional Autonoma de Mexico Distrito
Federal, Mexico, 248 - 255.

10

2. Phil Lapskey, Jeff Bier, Amit ShoHam, Edward A. Lee ,DSP Processor Fundamentals –
Architecture and features, IEEE PRESS, 1997.

3. Shu-Fang Zhao, Li-Chao Chen, The BP Neural Networks applications in Bank Credit Risk
Management System, ICCI '09. 8th IEEE International Conference on Cognitive Informat-
ics, 527 – 532.

4. Yufang Wang, Hongsen Yan and Xiangang Meng, Matching Decision Model for Self-
adaptability of Knowledge manufacturing System, (ICIST), International Conference on
Information Science and Technology, 891 – 895, 2011.

5. Zhou H., Wang J., Qiu Y, Application of the Cross Entropy Method to the Credit Risk As-
sessment in an Early Warning System, International Symposiums on Information Pro-
cessing (ISIP), 2008, 728-732, 23-25 May 2008.

6. Quer G., Meenakshisundaram H., Tamma B., Manoj B.S., Rao R., Zorzi M., A Cogni-tive
Network Inference through Bayesan Network Analysis, Global Telecommunica-tions Con-
ference (GLOBECOM 2010), 2010 IEEE, 1-6, 06-10 December 2010.

7. Xiu-Li Pang, Yu-Qiang Feng, An Improved Economic Early Warning Based on Rough Set
and Support Vector Machine, International Conference on Machine Learning and Cyber-
netics, 2444-2449, 13-16 August 2006.

8. M.C. Miglionico, F. Parillo, Modelling a neuron using a custom math library sfloat24 –
Implementation of a sigmoid function on a FPGA device –, ISHAP Conference Sorrento
Italy: 15 – 18 June 2011, http://204.202.238.22/isahp2011/dati/autor.html, Online Proceed-
ings ISSN 1556-8296, Proceedings of the International Symposium on the Analytic Hier-
archy Process for Multicriteria Decision Making, Publication date: 15 June 2011.

9. M.C. Miglionico, F. Parillo, A Current Hysteresis Controller for Reduction of Switch-ing
Losses in a Full-Bridge Inverter – FPGA implementation by using a custom devel-oped
24 bit Floating Point Math Library –. IEEE Conference UPEC 2011, Soest, Ger-many,1-6,
05-08 September 2011.

10. M.C. Miglionico, F. Parillo, FPGA implementation of sfloat24 digital PI. IEEE Con-
ference PEDES 2010 Power India, New Delhi, 20-23 December 2010.

11. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE 754 1985.
12. W. Kahan, Lecture notes on the Status of IEEE Standard 754 for Binary Floating Point

Arithmetic. Electrical Engineering and Computer Science – University of California
Berkeley CA 94720-1776, 31 May 1996.

13. C. Attaianese, F. Parillo, G. Tomasso, Dual Boost High Performances control strategy on
a Power Factor Correction (PFC) implementation by using a 24 bit custom floating point
library. Journal of Electrical Engineering [http://www.jee.ro], Vol. 10 edition 4, 23 De-
cember 2010.

14. Samuel Ginsberg, Compact and Efficient Generation of Trigonometric Functions using a
CORDIC algorithm. Cape Town, South Africa, January 2002.

15. M.C. Miglionico, F. Parillo, A BP Neural Network Application in Bank Credit Risk Man-
agement System using a sfloat24 custom math library – FPGA implementation –,
A.M.A.S.E.S. Meeting, XXXV Edition, September 15-17 2011, Pisa, ITALY.

